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PREFACE

THE study of Mechanics as presented in this volume is founded
upon a course in mathematics extending through the Calculus.
It is assumed, moreover, that the student has already become
familiar with the fundamental ideas of force, energy, and work
- through such preliminary courses as are included in textbooks
on General Physics. In short, this volume presents the subject
of Mechanics in that relation to other mathematical subjects which
has become established in the curricula of the technical schools
of this country. It should be emphasized, however, that the
volume includes, for purposes of review, a discussion of the
fundamental notions and many simple exercises involving these
notions.

Attention may be called to the arrangement in the text. This
arrangement is founded upon experience in teaching the subject
for many years in the Sheffield Scientific School of Yale Univer-
sity. In 19038 Professor E. R. Hedrick prepared a mimeographed
text which followed the conventional arrangement of treating
statics first. This text was used for one year. It then developed
that an obvious disadvantage existed in not taking up directly
upon the conclusion of the study of the Integral Calculus the
calculation of the integrals of Mechanics involving centers of
gravity and moments of inertia. The point was that this formal
integration out of the way, the continuous study of Mechanics
proper need not afterwards be interrupted. Acting upon this
conviction, the present text was prepared essentially as here
published in 1907, and has since that time been used in mimeo-
graphed form. The general plan of the arrangement is that
a single problem may at any one time be under discussion. Thus,
when the question of energy of rotation is solved, the appearance
of the moment of inertia integral presents no complication. This
has been disposed of already. Similarly, the equations of motion
presenting themselves as solutions of the force equations have

v



vi THEORETICAL MECHANICS

been previously discussed. Another feature is the departure
from convention by arranging types of motion under the corre-
sponding fields of force. In this way it is made clear that the
emphasis is to be laid upon the force and velocity of projection.
In the case of a book which, like the present volume, has been
long in the making, it is difficult to record definite acknowledg-
ments of aid and indebtedness. There are included in the text
many problems suggested by past and present members of the
mathematical department of the Sheffield Scientific School.
Further, the text has been the subject of discussion at frequent
departmental conferences, and for all suggestions received on
these occasions the authors gratefully here record their thanks.

The diagrams were skillfully prepared by Mr. S. J. Berard of.

the department of mechanical engineering.

New HaveN, CONNECTIOUT
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'THEORETICAL MECHANICS

" CHAPTER I

MOMENTS OF MASS AND INERTIA

1. Center of gravity. It is shown in a subsequent chapter
(Art. 108) that the influence of the weight of a solid in all
questions in mechanics is precisely that of a force equal to the
weight applied at a point called the center of gravity* of the solid.
It is assumed that the student is familiar with simple facts con-
cerning the center of gravity. For example, the center of gravity
of a straight line (or thin straight rod) is its middle point.
Again, the center of gravity of a triangle is the point of inter-
section of the medians. 4

This statement may be proved as follows. Divide the
triangle into thin strips by lines parallel to one side. Draw
the median AD. The center of gravity of each strip lies on
AD. Hence the center of gravity of the triangle lies on AD. v

Similarly, the center of gravity lies on the median BE. This
establishes the statement.

The formulas for the center of gravity in- p
troduced in the following sections involve mag-
nitudes called the moments of area or moments of mass. The
student is asked to. accept these formulas as definitions. Later,
in discussing weight the formulas appear as giving the center of

gravity.
2. Moment of area. Consider an element of any plane area
AA = AzAy,
& ';IE” at the point (2, ¥). Then the products
zAA, yAA

are called the moments of AA with respect to the axes OY and
OX, respectively.

D (

# Called also center of mass.
1
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Y] This definition is extended to any finite area
4 in the usual way by summation and taking
limits. Hence if M, and M, denote the mo-

b ments of area for the area A with respect to the
0 ' x axes OX and OY, respectively, then
, ( limit
M,:ffydA=ijdxdy= l Az =0, Y yAzAy |,
. L Ay =0,

M : ( limit
M,:ffdi:ffxdmdy: l 2»:0, EzwAwAu'].
. l =0,

The Center of Gravity of any given area A is the point (z, )
given by the quotients

I .

In these formulas z and y are the codrdinates of any point within
the area. :

The common denominator (the area of the given figure) must
be found, if not otherwise known, by integration; that is,

Area = f f dzdy.

In working out examples using (II) calculate the moments
f f zdA and f f ydA, first, and ther divide by the area itself.

Dimensions. Whenever it is desirable to express numerically
the magnitude of a physical quantity, we do so by choosing a
unit of that quantity. It is convenient, when possible, to choose
the units of different kinds of quantities so that some of them
depend upon others. The units which are chosen arbitrarily are
called fundamental. The derived units are those which are so
defined as to depend upon the fundamental units. In mechanics
it is customary to choose as fundamental the units of length, mass,
and time, and all other units are made to depend upon these.
For example, if the unit of length is the foot, the unit of area
is defined as the area of a square whose sides are one foot in
length. The relation between the derived unit of area and the
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fundamental unit of Iength is then expressed by the dimensional
equation, Area = length?.

Similarly, the dimensional relation between the derived unit of
volume and the fundamental unit of length is

Volume = length?.

The dimensional equation is a concise way of expressing the
relation between the units of different quantities, and is not to
be interpreted as an ordinary algebraic equation.

Moment of area has been defined as the product of area by
distance, and hence the unit of moment of area is of the third
degree in the unit of length.

Moment of area = area x length = length?.

The fact that every term of an equation involving physical
quantities must be of the same degree in the fundamental units
furnishes a useful check in the problems of mechanics. For
example, in (II) z is of the first degree in the unit of length, and
hence the second member of the first equation must also be of the
first degree. This is easily verified, since the dimensional relation
gives M, _length?

=length.
area lengt.h2 engt

3. Symmetry. The center of gravity will lie upon any axis of
symmetry which the figure may possess. For ex-

ample, if OY is such an axis, we may divide the, X
figure into the equal elements AzAy and sum up,
taking two symmetrical pairs at a. time. Then the
sum of the moments with respect to OY for two
such pairs, that is, z,AzAy + z,AzAy, will vanish,
since z; = — z,. Hence the mo-
Y] ment with respect to 0Y, that is,
/H:Hj@ M, = f f zdA, also vanishes, and Z=0.
‘ | ILLusTrATIVE ExampLE. Find the center of gravity
0 of the area bounded by y% =2 px and z = A.
N Solution. Evidently y =0.
Calculate the moment of area with respect to OY
bemeemboJ Thisis, by (D), .

m,__f_fzazdy ff dyaz=2\/§5j;2§az=fmhi‘



4 THEORETICAL MECHANICS

Next find the area. This is

A o +Vopa
foj'_\@ dydz =4 V3p Wt
S E=}h. by (1I).

PROBLEMS
Note. If the equation of the curve is given in polar cobvrdinates (p, 6), place
in (I) and (II) dA = pdpdf, x = p co8 6, y =p sin 4.
P 1. Find the center of gravity of the triangle bounded

by the lines y = mz, y =0, z=a. Ans. T=ja, 7=
. z=4a,y=

ma

3
ipsihd 2. Find the center of gravity of the triangle bounded
by the lines y =mx, y =—mz, y=>b. Ans. z=0, y=gb.

3. Find the center of gravity (1) of a quarter of a
circle in the first quadrant; (2) of one sixth of a circle, supposing the z-axis to be

0| X

an axis of symmetry. Ans. (DE=j§= 8 . (2) 5._:27“’ 7=0.
4. Find the center of gravity of a quadrant of the ellipse X 5 + !I:: =1
Ans. 7=42, Y =4b,
BT *

5. Find the center of gravity for the area bounded by y2 =4 ax, y =0, z = b.
Ans. Z=14b,¥=%/gb.

6. Find the center of gravity of the area bounded by 42 =4 ax, =0, y =b.
=_3b -_38
Ans. z= 04 y= b

7. Find the center of gravity of the area bounded by the semicubical parabola
g =28and z = a. Ans. E=ja.

8. Find the center of gravity of the area bounded by y =a sin Z and the
z-axis between z = 0 and z = ar.

Ans. z= }ar, y=tar.

9. Find the center of gravity of the area bounded by the hyperbola zy = ¢2,

z=a,z="b,andy=0. b—a = (b —a)

Ana. z=logb—loga’y=2ab(logb—loga)'
10. Find the center of gravity of the area bounded by the parabola y? =4 ax

d the straight liney = ma. -
and the straig| ey =mz Ana. z_s——,y 2a
6 m? m

11. Find the center of gravity of the area included by the curves y2 =
2 - —
and z* =by. . Ans. z =% akbi, y=o abob.

12. Find the center of gravity of the area bounded by the cardioid
p=a(l+cos). Ans. x=}{a.
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13. Find the center of gravity of the area included by a loop of the curve

p=acos26. - _128aVv2
Ans. z = 106 %
14. Find the center of gravity of the area included by a loop of the curve
p=acos30. Ans. 5= 81 avi
YT 80w

16. The lengths of the parallel sides of a trapezium are g and b. Show that
the center of gravity of the area divides the line joining the middle points of the
parallel sides in the ratio (a +2b)/(2a + b).

16. If the sides of a triangle be 3, 4, and & feet, find the distance of the center
of gravity from each side. - Ans. §, 1, § foot.

17. Find the center of gravity of the area bounded by the cissoid
PrRa—z) =28
and its asymptote z = 2a. Ans. z=4%a.

18. Find the center of gravity of the area bounded by the witch

?y=4aQ2a—-y)
and the axis of X. Ans. y=}a.

19. Find the center of gravity of the area bounded by the parabolas y2 = ax
and y? = 2 az — 23, which is above the axis of X.

Ans. T=ql07—# o @

r—40' ' T3x—_38

20. Find the distance from the center of the circle of the center of gravity of
the area of a circular sector of angle 2 6. Ans. §r sl_!;ﬂ'

21. Find the distance from the center of the circle of the center of gravity of
the area of a circular segment, the chord subtending an angle 2 4.

Ans. % r 8in30

® — sindcosd

4. Theorem on the center of gravity. The center of gravity
of an area is a fized point relative to that area. That is, the posi-
tion of the center of gravity does not de-
pend upon the axes of coordinates, but
upon the area itself only. The proof of
this familiar truth is as follows.

Let L be any line, and assume its equa-
tion in the normal form (55 (¢), Chap. XIV)
zcosw+ ysinw —p =0.

Consider the element of area AA= AzAy at (z, y), and let the
distance from L to (z, y) equal ». Then the product rAzAy is

o 7 X
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called the moment of A4 with respect to the line L. Extending
to a finite area as before, the double integral

(€)) M},=ffrdA

is called the moment * of area with respect to L.

This integral may be expressed in terms of the moments M,
and M, with respect to OX and OY as follows. By Analytic
Geometry,t or formula 56, Chapter XIV, '

r=zcos® + ysinw —p. .

.~.ffralA=f (zcos w+ysinw— p)dA
=cosmffdi+sinmffydA—pffdA

=cos o M, + sin o M, — pA.
Using formulas (IT), putting A = Area of the figure, then

M,,=A:T:,‘M,=A37,f dA=A. Henco

M= (Ecosm+g7'sinw—p)A=?A,

if # = distance from L to the center of gravity (z, ).
Hence this

THEOREM. The moment of area of a plane figure with respect
to any line equals the product of the area and the distance from that
line to the center of gravity. Hence the moment of area with respect

to any line through the center of gravity
L 48 zero.

Now suppose we have worked out
the coordinates of the center of gravity
C for a plane figure with respect to a
given set of axes OX and- OY. Let
0 X 0'X', 0'Y' be any other set of axes.
Let the new coordinates of any point in the area be (2/, y').
Also_let the new coordinates of Cbe (z', y'). Then, by Art. 2,

® Also called the first moment, because of the appearance of the first power of the
distance r in the integral.

t Smith and Gale, Elements of Analytic Geometry (Ginn and Company), p. 108
Future references are to this volume.
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formulas (IT), the codrdinates of the center of gravity found by
using the new axes are

ffz’dA, ffy’dA

area area
By the theorem just given we have, however,

f f 2'dA = moment of area with respect to 0Y' = A7,

y'dA = moment of area with respect to 0X" = Ay'.

‘ f ‘/.x'dA ‘[ f ydA
Hence .
l A A

ter of gravity is found by using the new axes. This investiga-
tion, therefore, verifies a well-known property of the center of
gravity, namely, that it is a fixed point relative to the area.

= (7, y"); that is, the same cen-

SOLIDS OF REVOLUTION

5. Moment of mass. The volume of a thin flat plate or lamina
equals the product of its surface by the thickness. If of uniform
density, its mass is the product of the volume and the density.
For the present, the density will be assumed constant and will be
denoted by 7. The lamina being thin, its center of gravity is
sensibly the same point as the center of gravity of its surface or
area. The moment of mass of a lamina with respect to a plane
parallel to its surface equals the product of its mass and the dis-
tance from the plane to its surface. The plane being parallel to
the surface of the lamina, every point of the lamina is at the same °

¥4

Y{O - ez

- (b) (o)
distance from the plane. Passing now to a homogeneous (of
uniform density = 7) solid of revolution, we may slice up such a
solid by a series of equidistant parallel planes perpendicular to
the axis of revolution (fig. @). Assume OX as this axis, and Az
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as the common thickness of the slices. Now consider each slice
“trimmed up ” into a circular lamina, one face of the slice remain-
ing unchanged, so that the solid is now replaced by a new solid
obtained by revolution of the set of rectangles in fig. . The
mass Am of any one of the circular lamina is (fig. ¢)

Am = 1Ay = 7 - my?Az,

for y(=2) is the radius of the base and Az the thickness. Since
the lamina is parallel to ¥YZ, its moment of mass with respect to
YZ is zAm or 7- wy*Az times z. The total moment of mass of
all the circular lamine may then be represented by =zAm or also
SrnryxAz. The moment of mass of the solid itself is then
defined as the limiting value of this sum when Az approaches zero.
Using for this the symbol M,,, we have

. limit
i . =faxlm = nfxy’d:c(= A::__ PN W’M),

The method explained here of slicing the solid of revolution
into circular lamin is very important and should be mastered by
the student.

The center of gravity of a solid of revolution whose axis is
along OX is defined as the point (z, ¥, z), where

M zdm T f zyidz
av z=—t= =t » y=0,z=0.
mass  mass mass

It is clear that ¥ =2 =0, since the centers of gravity of all the
laminz are on the axis of revolution, and hence the center of
gravity of the solid is on the axis of revolution.

In the calculation of Z, we need to find two integrals,

M, =rr f zy’dz and Mass = f dm = rm [ y¥dz,
in which y 48 to be found tn terms of z from the equation of the
generating curve.

Dimensions. The quantity moment of mass has been defined as
the product of mass by distance. Hence in terms of the funda-
mental units of mass and of length the dimensional relation is

Moment of mass = mass x length.
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PROBLEMS

HOMOGENEOUS SOLIDS OF REVOLUTION
1. Find the center of gravity of the cone formed by revolving the line hy = az
around the z-axis between z = 0 and = = h. Ans. z=14h.

2. Find the center of gravity of a hemisphere.
Ans. Distance from base = § radius.

8. Find the center of gravity of the paraboloid of revolution formed by revolv-
ing about the xz-axis the parabola y2 = 4az fromx =0 tox = b.
Ans. z=4b.

4. The area bounded by the lines y =0, x =a and the curve y2=4aqazx is
revolved about the y-axis. Find the center of gravity of the solid formed.

. Ans. y=ja.

5. The area of the elllpse + bﬂ =1, in the first quadrant, is revolved about

the z-axis. Find the center of gnmty of the solid formed. Ans. z=}a.

2
8. The area bounded by the lines y = 0, 2 = 2 a and the hyperbola %—g; =1

is revolved about the x-axis. Find the center of gravity of the solid formed.
7. The area bounded by the lines x =0, z =a, y =0, and the hyperbola

2
a: g:+ 1 =0 is revolved about the z-axis. Find the center of gravity of the solid

formed.
8. The area bounded by the linesy =0, z = %, and the curve y = sin z is re-
volved about the z-axis. Find the center of gravity of the solid formed.

9. The area bounded by the linesz =0, z = a, y =0, and the curve y = ¢z is
revolved about the z-axis. Find the center of gravity of the solid formed.

10. Find the center of gravity of the solid generated by a semiparabola
bounded by the latus rectum, revolving round the latus rectum.
Ans. Distance from focus = ; of latus rectum,

PARTICULAR SOLIDS

6. Moment of mass. Certain solids may be divided by a series
of parallel planes into laminz whose sur-
faces depend in a simple manner only upon
their distances from a parallel fixed plane.
Taking this plane as YZ and considering a
lamina at the distance z, then if A is its
surface, by hypothesis, A= f(z),— a known
function. Hence Am = 7f(z) Az (if the
thickness of the lamina is Az). The moment of mass of the
solid with respect to ¥Z will then be defined as equal to



10 THEORETICAL MECHANICS

@ M,= [zdn= 'rfx f(z)dx(— hmlt Enf(x)Az)
The distance z of the center of gravity from the ¥YZ-plane is of
course equal to
M T |z f(z)de
)] T= ot =
T '/ Sf(@)dz
since Mass equals | dm = f f(@)dz.

In (2), the uniform density = cancels out. The function
J (@), it is to be remembered, is the area of a cross sectlon parallel
to YZ at the distance z.

IrLusTraTIVE ExampLe. Find the center of gravity of any cone, pyramid,
’ or cylinder of uniform density.

Solution. The definition of a cone or pyramid
Y must be clearly understood. This is the following.
Given any plane area B and a point ¥ without it.
Draw the line VP through ¥V and any point P on the
_ boundary of the area B. Now let the point P move
around the boundary of B, carrying in its motion the
line VP. The surface thus generated by the line VP,
called a generator, and the area B bounds a solid.
If B is bounded by straight lines, the solid is a
pyramid, otherwise a cone. The area B is called the
base and V the vertex.
The following theorem is now assumed for any cone or pyramid. Take a section
A parallel to the base B. Then the areas of A and B are in the same ratio as the
squares of their distances from the vertex V.
To apply formula (2), let the area B lie in the YZ-plane. Let the section A be
at the distance z from the base. Draw the line VH perpendicular to the base B,
and let VH = h = altitude. Then

distance of the area 4 from vertex = h — z,
distance of the area B from vertex = h.

. A_(h—2)? _B
. .. by the theorem, E_KTL, orA_F(h—x)’.
Hence in (2), f(z):l‘—g(h——:c)".
A
o M=t o%z(h—x)’dx:f,‘rBh’,
1]
— B —
M_'rj;ﬁé(h—x)?dx_ith.

Hence T=1%h.
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Now it is clear that the centers of gravity of all sections of the cone or pyramid
which are parallel to the base B will lie on a line joining ¥ to the center of gravity
of the base. This line is called the azis. Hence the

TueoreM. The center of gravity of any homogeneous cone or pyramid is the
point on the axis which is one fourth of the distance from the
base to the vertex.

A cylinder is the solid obtained thus. Let a generating
line AA’ move always parallel to itself, while the point 4
follows a plane curve inclosing an area B. The’ solid
bounded by this surface, by the area B, and by the section B/ ¢
parallel to B, is called a cylinder. The line joining the cen-
ters of gravity of Band B’ is called the axis. This line is parallel to the generator
AA'. Clearly, the center of gravity of the cylinder is the middle point of the
axis.

PROBLEMS
1. Find the center of gravity of a frustum of a pyramid with a square base.
2. Find the center of gravity of an elliptic cone. The equation of an elliptic
cone is z—:+;—:=x’. Take the plane z = 1 for the base of the cone.

8. Find the center of gravity of the solid bounded by the elliptic paraboloid
f.,.ﬁ:z, and the plane z =1.
a? b2

4.* Find the center of gravity of a right conoid with circular base, the radius of
the base being r and altitude a.

6. A rectangle moves from a fixed point, one side varying as the distance from
this point, and the other as the square of this distance. Find the center of gravity
of the solid generated while the rectangle moves a distance of 2 feet.

6. On the double ordinates of the ellipse %: + g =1, isosceles triangles of verti-

cal angle 90° are described in planes perpendicular to that of the ellipse. Find the
center of gravity of the solid generated by supposing such a variable triangle moving
from one extremity to the other of the major axis of the ellipse.

7. Given a right circular cylinder of altitude @ and radius of base r. Through a
diameter of the upper base pass two planes, which touch the lower base on opposite
sides. Find the center of gravity of the solid included between the planes.

8. Two cylinders of equal altitude a have a circle of radius r for their common
upper base. Their lower bases are tangent to each other. Find the center of
gravity of the solid common to the two cylinders.

9. Ananchorring is cut in two equal parts bya plane through its oenter, which
passes through its axis. Find the center of gravity of one half. :

*For the volumes of the solids of examples 4-8, see Granville, Differential and
Integral Calculus (Ginn and Company), p. 422. Future references are to this volume.
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7. Moment of mass. Any solid. Consider any solid and an
interior point (z,y,2). The density of this solid may be variable.
In this case, we assume the density = at any interior point (z,y, 2)

to be some function of the co-
ordinates, say

(1) density at (z,y,2)

. = 7(2,¥,2).
Taking an element of vol-
| ume
Av=AzAyAz,

P we have as the element of
mass at (z, ¥, 2), )

Am =1 (z, y,2) Av.

The moment of mass for this element with respect to the coordi-
nate planes we define thus:

with respect to YZ=2- Am,
13 “ 3 ZX=yAm,
« & «wXV=z.Am.

The moments of mass of the solid with respect to the codrdinate
planes are derived from these by summation and passing to the
limit as Az, Ay, and Az approach zero. That is, we define for
any solid,

(V> ty = f ftm, 0=  § fuam 35, fm.

the limits being so chosen that the entire solid is included. For-
mulas (V) are included in the single formula

e ff fin

where 7 is the distance from one of the codrdinate planes to any
interior point of the solid. In these formulas z, y, and z are the
coordinates of any point within the solid. The center of gravity

of the solid is then the point whose codrdinates z, ¥, z are given
by
(VI g g M

= =M=
mass’ v— ’z—

mass mass’
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In formulas (V) and (VI) we set

dm =1 (z, ¥y, 2) dzedydz, mass=fffdm.

In determining the center of gravity of a solid, four integrals,
namely, the moments with respect to the three coérdinate planes
and the mass, must be calculated.

Homogeneous solids. In this case the density 7 is constant.
For such solids, a theorem corresponding to that of Art. 8 holds,
namely,

The center of mass of a homogeneous solid lies in any plane of
symmetry of the solid. The proof is left to the reader. To derive
formula (IIT) (Art. §) from (V), proceed thus. We have

M —'rfffzdzdydz f[ffdydz]zdx

@= constant

But l: f dydz]= area of cross section in the plane z = constant,

@ == constant

and hence equals 72 under the conditions of Art. 5.

. My. =T ry’zdx,
which is (IIT).

THEOREM ON THE CENTER OF Mass. Results analogous to
those of Art. 4 are readily derived for solids; namely,

The moment of mass of a solid with respect to any plane equals
the product of the mass by the distance from the plane to the center
of gravity. The center of gravity is a fized pomt relatwe to the solid.
This proof is left to the reader.

PROBLEMS
1. Find the center of gravity of the first octant of the homogeneous ellipsoid
B gy B - — -
+b’+cﬂ_l' Ans. x=}a,y=}b z=}c.

2. Find the center of gravity of the homogeneous solid bounded by the surface
22 = zy, and the planes z =a,y = b, 2=0. Ans. E=4a,§=14b, 3= Vab.
3. Find the center of gravity of the paraboloid of revolution formed by revolv-

ing about the z-axis the parabola y2 =4 aqx from z =0 to z = b, supposing the den-
sity to vary as 22, Ans. z=4b.
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4. Find the center of gravity of a hemisphere whose density varies as 22, as-

suming the base in the YZ-plane and the origin at the center of the base.
Ans. z=ja.

5. Find the center of gravity of the cone formed by revolving the line ky = az
around the z-axis between z =0 and z = A, assuming the density varies as z».
n+3 A
n+4

6. Find the center of gravity of the homogeneous solid bounded by the surfaces
24yf=42, 224+ =8zand z=0. )

7. The axes'of two cylinders each of radius g intersect perpendicularly. Find
the center of gravity of the solid included by the two cylinders and a plane through
their axes. Ans. § a from the plane.

8. A t.hm plate whose density varies as (A2 — z’)'i is bounded by the lines
y =az,y=0,and z=a. Find its center of gravity. Ans. z=3}xh; y=} rah.
9. Find the center of gravity of the first quadrant of a circular plate whose
density varies as zy. Ans. 2=y =(a.
10. Find the center of gravity of a circular sector (angle = 26, radius = a). if
the density varies as the distance from the center. Ans. T= 8a siné
YT 4 T Te
11. Find the center of gravity of a circular sector in which the density varies

as the nth power of the distance from the center.

2
Ans. : I 3" aTc’ where g is the radius of the circle, I the length of the arc, and
¢ the length of the chord of the sector.
18. Find the center of gravity of a circle in which the density at any point
varies as the nth power of the distance from a given point on the circumference.
Ans. It is on the diameter passing through the given point at a distance from
2 2 .
this point equal to ___S'n:4 ). a, a being the radius.
13. Find the center of gravity of a quadrant of an ellipse in which the density
at any point varies as the distance of the point from the major axis.
Ans. z =-§a, ;:%b.

8. Principle of combination. Since the moment of area or of
mass is a definite integral, if an area or solid

Ans. = =

¥ is divided into two parts, the moment of the
L 4 whole equals the sum of the moments of
BEAY L ]A\  the separate parts. Thus consider the ac-
TE 5 companying figure, in which (z,, ,) is the
b ?i 7 center of gravity of the area 4,, and (Z,, ¥,)

5 13 % the center of gravity of the area 4,. Tak-

ing moments with respect to
0X: total moment= Ay = A4y, + 4, ¥y
0Y : total moment = Az = 4, 7, + 4, 7,.




MOMENTS OF MASS AND INERTIA 15

Hence the center of gravity of the combined areas is

=_ 41T+ 4@y =AY+ Ay
(VII) =—4g+4: 'Y= 4,14,

These formulas agree with those for the point of division in

formula 50, Chapter XIV, if A _j’- Hence this
1
THEOREM. The center of gravity of a plane figure composed of
two parts divides the line joining the centers of gravity of the parts
in the inverse ratio of the areas of the parts.

A similar theorem holds for solids.

The discussion holds for an area (or solid) resulting when a
portion of the area (or solid) is removed, if its area or mass be
taken negatively. The proof, which is left to the reader, comes
from (VII) by transposition. In working problems under this
head, the line ]ommg the centers of the parts may convemently
be taken for one axis of co6rdinates.

ILLusTRATIVE Exampre. To find the center of gravity of the remainder of a
circle of radius 2 after a circle of radius r has been removed as indicated in the
figure, v

Solution. Let ¢ be the center of gravity sought,
and denote the area of the large circle by 4; and
that of the small circle by 4;. Then we have

Ay =—718, ez
Ag=4wr8. X

Subetituting in (VII),

Evidently y is zero by symmetry. Hence the center of gravity ¢ lies on the z-axis
at a distance of } » to the left of the origin. Also ¢ divides the line c;¢; in the ratio

PROBLEMS

1. A rod of uniform thickness is made up of equal lengths of three substances,
the densities of which taken in order are in the proportion of 1, 2, and 8; find the
position of the center of mass of the rod: )

Ans. At ¢y of the whole length from the end of the densest part.

2. If five ninths be cut away from a triangle by a line parallel to the base,
show that the center of gravity of the remaining area divides the median in the
ratio 4:6.
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3. One corner of a square plate of side a is cut off by a line joining the middle
points of two adjacent sides. Find the center of gravity of the remainder.

Ans. Y28 from the center.

21
4. An equilateral triangle is formed on one side of a square. Find the center
of gravity of the whole area. Ans. —3% _ from base of triangle
+2Vv3

6. One corner of a square of side 2 a is cut off by a line drawn from a corner
to the middle point of an opposite side. The opposite corner is also cut off by
removing a circle of radius p having its center at the corner. Find the center of
gravity of the remainder.

6. Find the centers of gravity of the shaded portions of the following figures.

7] @ 3

©

4 ) )

7. A cylinder is 12 in. long, and for 8 in. of its length has a diameter of 4 in.;

for the remaining 4 in. it has a diameter of 3 in. Find the center of gravity.
Ans. 53} in. from thick end.
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8. A cone having the same base and vertex is cut from the paraboloid of revo-
lution whose generating curve is y? =4 ax between x =0 and x = b. Find the
center of gravity of the remaining solid. Ans. 7=

- z=c.

9. From a sphere of radius R is removed a sphere of radius r, the distance

between their centers being ¢. Find the center of gravity of the remainder.

Ans. 1t is on the line joining their centers and at a distance erd from the
center. B

10. Find the center of gravity of a cubical box without a lid, the inside edge
being 20 in. and the thickness of the wood 1 in.

11. Find the center of gravity of the remainder of an equilateral triangle from
which has been cut an isosceles right triangle with hypotenuse coincident with a
side of the original triangle.

12. A right circular cone whose base is of radius r is divided into two equal
parts by a plane through the axis. Prove that the distance of the center of gravity

ofeimerhauﬁomt.hemsis;-

13. Find the center of gravity of half of a regular hexagon.

14. From a hemisphere is cut a cone having the same base and altitude. Find
the center of gravity of the remainder. Ans. Distance from base = { altitude.

16. From a right circular cylinder is cut a cone having the same base and
altitude. Find the center of gravity of the remainder.
Ans. Distance from base = § altitude.

16. From a right circular cone of altitude a is cut a similar cone of altitude b,
the bases of the two cones being in the same plane. Find the center of gravity of

the remainder. Ans. Distance from base = 1 22— %
4a8— 03

9. Center of gravity of an arc.” The center of gravity for any
plane curve is given by formulas analogous to (II), Art. 2, ob-
tained by replacing the element of area or mass by the element of
arc of the curve, that is, for a plane curve, by 66, Chapter XIV,

1) do=[(dz)+(dy))t = [1 + (%)“T do = [1 + (%)’Tdy.

The formulas are Y

(VIII) 5= Jzas __fuas _,/v/

in which ds is found by (1). In these z and y
are the coordinates of any point on the curve.

Formulas (VIII) are used to find the center of gravity of uni-
form thin wires. If o is the area of the cross section, and As the
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whered denotes the area. Let the area be revolved about the
z-axis. The volume generated is given by the definite integral

@ V=m f yidz.

Consider the numerator in (1). “Integrat-
ing with respect to g, X X

® f J ydydz = f vz = %%

comparing with (2).
Substituting in the second member of (1), we get
- _ 17 oz _V
(4) y—-é;-l-A, 0r21ry—A.
Now 27y = length of path described by the center of gravity.
Hence the :

FirsT THEOREM. If any plane area be revolved about an ez-
terior azis in its plane, the length of the path described by its center
of gravity 1is equal to the volume generated, divided by the area
revolved.

This theorem has two uses: (1) if the area and its center of
gravity are known, we may find the vol-

ume of the solid of revolution; (2) if the
area and volume are known, we may find
X x the center of gravity. For example, to

find the distance of the center of gravity
of a semicircle from the center, we have

_ volume of sphere 4 wa® 4a
2wy = ~omicirole % p o whence § = S

T

-

Next consider any curve in the XY-
plane. The distance of the center of |
gravity from the z-axis is given by the y
formula (VIII), X X
yds
® LI

where & denotes the length of the curve. Let the curve be re-
volved about the z-axis. The surface generated is (68, Chap. XIV)

S=2‘rrfyd8.
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But the length of the path described by the center of.arc is
(multiplying both members of (5) by 2)

20 | yds
2'":7: _IL=§.

8 8
Hence the
SecoND THEOREM. If any plane curve be revolved about an ez-
terior axis in its plane, the length of the path described by its center
of gravity i8 equal to the surface of the solid generated, divided by the
length of the arc revolved.
) This theorem has two uses: (1) if

the length of the arc and its center are

known, we may find the surface of the
X y solid of revolution; (2) if the length of
' the arc and the surface of the solid are
known, we may find the center of gravity of the arc.
For example, to find the distance of the center of gravity of a
semicircle from the center, we have

9 i = Surface of sphere _ 4ma? _ . ence § = 2
semicircumference  ma ’ T
PROBLEMS

1. Find the center of gravity of an arc of the circle p = g between — 6 and + 6,
and from this derive the results for quadrantal and semicircular arcs.

Ans. =25100  For quadrantal arc 0=, z=-29
ns. T 2 'or quadrantal arc ‘4,3’”&.
For semicircular arc § = X, 7 = 2%.
Y’ w
2. Find the center of gravity of a thin straight wire of length a whose density
varies as the nth power of the distance from one end. Ans. z="t1
T T n42

3. Find the center of gravity of the perimeter of the cardioid p = a (1 + cos 8).
Ans. Z=%a,7=0.

4. Find the center of gravity of the cycloid z = a arc vers 3—:— (2ay — y’)*

between two successive cusps.  Hint. dx =¥ Ans. T=am = ﬂ-’.
Y Viay—yt 3

6. Find by the theorem of Pappus the center of gravity of one fourth of a circle

in the first quadrant. Ans. F=F = 4a

»
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8. Find by the theorems of Pappus the volume and surface of the torus gener-
ated by revolving the circle (z — b)3 + 32 = a® (b > a) about the y-axis.
Ans. V =2x%%, §=4x%abd.

7. The ellipse .:’—:-}- g =1 is revolved about the line z =2a. Find by the
theorem of Pappus the volume generated. Ans. 4 xa?.
8. An equilateral triangle revolves around its base, whose length is a. Find*
(1) the area of the surface and (2) the volume of the solid generated. )
Ans. (1) xa* V3 ; (2) %’ .
9. A square of side g is revolved around an axis in its plane, the perpendicular

distance of which from the center isc. Find (1) thearea of the surface and (2) the
volume of the solid generated.

10. A rectangle is revolved around an axis, which lies in its plane and is per-
pendicular to a diagonal at its extremity. Find the area of the surface and the
volume of the solid generated.

11. Moment of inertia. Plane areas. Consider an element of
area

AA = Az Ay,
at the point (z, y). The products, g
!
[ X

P#AA, yAA,

are called the moments of tnertia or second

moments of AA with respect to the axes 0¥ and OX respec-
tively. The definition is extended to a finite area by summation
and passing to the limit. Using I, I, for the moments of inertia
with respect to OX and OY, respectively, then

£i= fras=  fasay=

Jé""% Ey’AmA ]
= v|;
Ay =0

Hmit
Ax =0 ) x*AxAy | -
Ay=0

(Ix)
I,=j'fzﬂa,4=ffx2dzay=

In these formulas z and y are the coordinates of any point within
the area. Formulas (IX) are embraced in the single formula

16D I= f f AdA,

where r is the distance from the axis in question to any point
within the area. This integral is called also the second moment
of area, from the second power of the distance r.
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Since each element y?ArAy or 2?AzAy is essentially posi-
tive, the moment of inertia* is never zero, but a positive
number. .
Its dimensions are area times square of a
length, and hence it is of the fourth degree
in the fundamental unit of length.

ILLustrATIVE ExauprLe. Find I, for the portion

of y3 = 2 pz cut off by z = A.
Solution. We have, by (IX),

4= § faranty= ([ (7" ay|erta= 2vap obas = 4 VAR,

Since 4 =§V2 ph*, we get for I, the expression

PROBLEMS

Note. 1f the equation of the curve is given in polar cotrdinates (p, 9), write
in (IX)
dA = pdpdé, 2% = p cos b, y=psiné,

1. Find Ifor a rectangle of sides 2 q and 2 b: (1) with respect to an axis through
the center of gravity parallel to the side 2a ; (2) with respect to the side 2 a.

Ans. (1) f‘—;’;; @ %Ab’.

2. Find I for a circle with respect to a diameter. Ans. } Aad

3. Find I for an ellipse: (1) with respect to its major axis; (2) with respect
to its minor axis. Ans. (1) § Ab2; (2) § da®

4. Find I for a right triangle with respect to one side.

5. Find I for a square with respect to a diagonal. Ans. 4y Aa?,

8. Find I for an equilateral triangle with respect to a median.

7. Find L for the cardioid p = a(1 + cos 6).

8. Find I, and , for one loop of the curve p = acos 2 4.

9. Find J, for the lemniscate 42 = a?cos 2 6. Ans. I, =;‘_8(a *+8)ak

12. Theorems on moments of inertia. The moment of inertia
of the element of area AA =AzAy with re- y;
spect to any line or axis L equals

r2AA,
where » is the distance from the line L to

the point (z, y). The moment of inertia of
a finite area with respect to L is then

* It appears later that moment of inertia determines the kinetic energy of revolution.
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X) L= (rda = (rdzay,

in which r is the perpendicular distance from the line I to any
point (z, y) within the area.

Let us apply (X)) to the case of an axis parallel to 0X, whose
equation is y=a. Then 7 =y — a, and hence

IL=’[f<y—a>’dA=ff(y’—2ay+a’)dA
_ffysz 2affydA+a’ffdA

Q) ... I=I—-2aM, +a*4 (by (IX)
Art. 11, and (II) Art. 2).

This formula expresses the moment of in-
ertia I in terms of the moment of inertia .
with respect to any parallel axis 0X, the 2
moment of area with respect to the latter, 7
and the area itself. 0

But suppose the center of gravity lies on OX. Then y=0
and also M, =0. Hence .

(XD I=1I +a*A.
An axis passing through the center of gravity is called a grav-
ity azis.
This establishes the important

THEOREM. The moment of inertia of a plane area with respect
to any axis equals the moment of inertia with respect to the parallel
gravity azis, increased by the product of the area by the square of the
distance between the axes.

This statement shows that the moment of inertia with respect
to a gravity axis is less than the moment of inertia for any parallel
axis.

Radius of gyration. The quotient of the moment of inertia by
the area is the square of a length called the radius of gyration.
Thus, if 7, denote this,

rl..2 - ZI"

in which 7, is the radius of gyration with respect to the axis L.
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PROBLEMS
1. Find the radius of gyration in the problems on page 22.
2. Find Iand 7 for a circle with respect to a tangent. Ans. I =} Aa?, P=%ad.
3. Find Iand 7 for an ellipse with respect to a tangent (1) at the end of the
major axis ; (2) at the end of the minor axis. Ans. (1) I=4} da?; (2) I=§}A4b2

4. Find I for a right triangle with respect to a line through one vertex parallel
to the opposite side.

6. Find I for a square with respect to a line through one vertex parallel to the
diagonal joining the other two vertices.

6. Find I for an equilateral triangle with respect to a line through one vertex
parallel to a median.

13. Further theorems. In the preceding section, the axis L
was drawn in the plane of the given area. It is necessary, however,
to consider moments of inertia with re-
spect to axes without, but parallel to this
plane. Let L be such an axis in the fig-
ure. Then if » is the perpendicular dis-
tance from the axis L to any point (z, )
within the area, we define in a manner
precisely analogous to the foregoing,

I= f f PdA = f fﬂdxdy.

Now project the line L upon the plane of the area, and take this
projection as the axis OX. Let the distance between L and
OX equal a. Then evidently. ¥ = a? + 3%, and hence

I,,=ff(y’+a’)dA=ffy2dA+a2ffdA.

(XID) s Ip=I. +a’4.

The moment of tinertia of an area with respect to an azis
parallel to its plane equals the moment of inertia with respect to the
projection of the given azis on its plane increased by the product of
the area by the square of the distance from the axis to the plane.

14. Polar moment of inertia. The moment of inertia of an
area with respect to the origin is defined as equal to

(XII) 1= f j' (@ +yH)d4 = 5' j' ?d A+ j' f y'dA.
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It will be observed that (22 + y?) A A is the product of A4 by
the square of the distance from (z, y) to an axis through O, per-

pendicular to the plane of the area. e
Such an axis is called a polar azis.
Comparison with (IX), Art. 11, enables Ay
us to write (XIII) in the form ;’ /o
Hence the 0 X

THEOREM. The moment of inertia of an area with respect to a
polar azis (called the polar moment) equals the sum of the moments
A with respect to two mutually perpendicular axes
drawn through its foot.

L If polar coordinates (p, 6) are used, the

7 X origin O being the pole, I, the polar moment of

inertia, is given directly by
AJ XV) L= j' f P2 pdPdO = 5' 5’ P*dpdo.

Moments of inertia of a circle. On account of important appli-
cations in the next section, the moments of inertia of a circle are
now worked out.

Let a = radius. Then, by (XV), the
polar moment of inertia with respect to
an axis through the center is

Q L= ‘/0' [ ‘/.: 2"a'u9:lpsazp="-’2_"‘=j‘?1az,

where 4 = area of the circle.
Also since I, = I, by symmetry, we have, by (XIV),

1 A
2 = — =-—2.
@ r=1r-4

In words: the polar moment of inertia of a circle with respect to
its center equals the product of one half the area and the square of
the radius ; with respect to any diameter — the product of one fourth
the area and the square of the radius.

15. Flat thin plates or lamin®. Moments of inertia of
lamine are obtained from the corresponding moments of inertia of
their surfaces by replacing the area by the mass of the lamina.
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For example, the polar moment of inertia of a circular lamina with
respect to its center equals the product of one half the mass by the
square of its radius.

The moment of inertia of a circular lamina with respect to a
diameter equals the product of one fourth its mass by the square of
the radius.

16. Solids of revolution. Moments of inertia of such solids
are obtained by slicing and trimming the solid into circular lamina
by & series of equidistant
planes perpendicular to the

axis of the surface, and con-

\ sidering the limit of the
} % sum of the moments of

inertia of the lamine. If
the axis of revolution be
chosen as 0X, the common
thickness of the lamin® as A z, and the density as 7, the mass Am
of any lamina is

€Y) Am=rry?Az.

Moment of inertia of a solid of revolution with respect to the azis
of revolution. The moment of inertia of any one lamina with
respect to the axis of revolution is the same
as the polar moment of a circular lamina
with respect to its center. By Art. 15,

this moment is equal to 0 2 X
@ | é2ﬂyz="_;£y«u by (1). %.}

The moment of inertia of the solid is accordingly
(XVD L= {yam= (T yda,

in which y is to be found in terms of z from the equation of the
generating curve.

\

Y
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ILLosTRATIVE ExampLE. Find the moment of inertia with respect to the axis
of revolution of a cone formed by revolving about the 2-axis the line y = mx between
z=0and z="b.

Solution. From (XVI), R -

=TT =TI
=3 "; mizide 0

Since the radius of the base a =mb and the volume=

I = {5 Mas.

rm2b8

3 we have

PROBLEMS

1. Find 7 for a rectangle of sides 2a and 2b with respect to a line perpendicular
to the plane and passing throngh the center. Ans. I= M (a4 b%)
- I=73 .

2. Find I for a right triangle with respect to a line perpendicular to its plane
and passing through the vertex of the right angle.
Ans. } Ac?, where ¢ is the hypotenuse.

3. Find I for the area of an ellipse with respect to an axis perpendicular to

the area and passing through the center. Ans. I=1} A(a?+ b3).
4. Find I'and 7 for a sphere with respect to a diameter. Ans. I=3 Ma?.
5. Find I, and 7. for an ellipsoid of revolution about the z-axis.
Ans. I=§ Mb2.
6. Find I and 7 for a right cylinder with respect to its axis.
Ans. I=} Ma?.
7. Find I for the solids of revolution about the z-axis whose generating
curves are (a) y*=4ar fromz=0 to z=0b;
@) y =sinz ¢ z2=0 ¢ z=mx;

() y=mex4+d* =0 ¢ z=c;
(@ y =e* “ =0 ¢ z=a.

Moment of inertia of a solid of revolution with respect to an axis
cutting the azis of revolution at right angles. We wish to find the
moment of inertia with respect to OY. D
To do this, we must first find the moment |.=o....__ y
of inertia of one lamina with respect
to 0Y. Now OY is an axis parallel to
the surface of the lamina. ILet DD’ be
the projection of OY upon this surface.
Then, by (XII), Art. 13, for the lamina
we have

(3) L (for one lamina) = ID + 22 Am.

But 7, is the moment of inertia of the lamina with respect to
a diameter. Hence, by Art. 15,

) I,= A4_"‘ 3,

S|
.
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Substituting in (3) gives
A
(5) Iy (for onelamins) = _4"““'/2 + 2Am.

Summation and passing to the limit leads to the result
(XVII) Iy ttor the sonay =f(-i'f + w’)dm =1~f(”' + 2 | myrda,

in which y must be expressed in terms of z from the equation of
the generating curve.
PROBLEMS

1. Find the moment of inertia of a right cylinder of radius ¢ and altitude A
with respect to a diameter of the base. Ans. I= M (803 +4M)
- I=15 .

2. Find the moment of inertia of a right circular cone of altitude A and radius
of base a, with respect to an axis through its vertex and perpendicular to its geo-

metrical axis. Ans. I=$ M (4h + ad).
3. Find the moment of inertia of the cone of problem 2 with respect to &
gravity axis perpendicular to its geometrical axis. Ans. I= 4 M(h?+4a?).

4. Find I for the solids of problem 7, p. 27.

17. Moments of inertia of solids in general. Consider any
solid and an interior point (z, y, z). If the density at this point
is T (z, y, 2) (compare Art. 7), the element of mass is

¢H) Am = 1AzAyAz.

The moments of inertia of Am relative to the coérdinate planes

are defined as
¢)) I,.=22Am, I.,=y*Am, I, =22Am.

The square of the distance of (z, y, 2) from the axis of z being
y? + 2? (with similar expressions for the other axes), the moments
of inertia of Am with respect to the coérdinate axes are

3) L=@+HAm, I,= (22 +2)Am, I,= (2+ y®)Am.

The moments of inertia for the entire solid may now be written
down, namely,

o= § f foram= | &
ru§§ fim, 1,5 fatam,

CXIX) ,=jjf(ya+zﬂ)dm, 1= ({ @ +anam,
L= ({ {@+ynam,

limit

Aw o 2A

(XVIII)
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where dm = (2, y, 2) dzdydz, and (z, y, 2) is any point within
the solid.
Formulas (XVIII) and (XIX) are included in the formula

I=ff rdm,

where r is the perpendicular distance from the axis or plane in
question to any point within the solid.

Dimensions. The moment of inertia of a solid has been defined
as the product of mass by the square of the distance. Hence the
derived unit of moment of inertia is expressed in terms of the
fundamental units of mass and of distance by the dimensional
equation

Moment of inertia = mass x length3.

By the radius of gyration of a solid with respect to any axis is
understood a length r, whose square is the quotient of the moment
of inertia with respect to the axis by the mass. Thus

I
2 xr .
(8a) T, _——— ete
The relations
&  Le=L.+L, L=I+1L, L=I+L.
obviously hold. In words,

The moment of inertia of a solid with respect to any azis equals
the sum of its moments relative to two mutually perpendicular planes
passing through the azis.

Homogeneous solids. For such solids the density = is every-
where constant. Formulas (XIX) applied in this case to a homo-
geneous solid of revolution about the z-axis work out as follows:

(5)I,='rff (PR + 22 dzdydz =-rf[f (42 + 2)dydz | dz.

x=constant

But f (% + 2)dydz calculated for any plane section z=

constant is obviously the polar moment of a circle with respect to
its center. Since the radius of this circle is y, then (Art. 14)
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%) o L= f’ié'fdz,

which is (XVI), Art. 16.
Similarly for the same solid,

®) I = f f f (3 +3)dodyds
=7f[ffdyd=z dz+rfU z'ﬂdydz]dx.

constant
But f f dydz calculated for any plane section when z = con-
stant, is the area of that section; that is,

© [ f dydz] Sy

Z=constant

Again, f f 23dydz for the section z = constant is the moment of

inertia of that section with respect to its diameter in the plane
XY. Hence (Art. 14),

(10) [ f z’dydz]= ™. g
Substituting in (8) gives
11 I=r wzyzdzq-ffl'ifdz;

that is, (XVII).

18. Parallel axes. If F is any plane, the moment of inertia of
any solid with respect to Z is defined as

e [

where r is the perpendicular distance from
the plane to any point (z, y, 2) within the
solid.

Parallel planes. Let E and E’ be
two parallel planes, r and #/ the dis-
tance from them to any interior point
(2, y, 2) of a solid. Then if a is the )
common distance apart of F and E',

we have
r =1+ a, and hence
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I3=fffr’dm=ff " + apdm
[ ffroneff froneaf [ fom
Butfff = I, ff dm =M,

and f f f r'dm = M7, where 7 is the distance of the center of
gravity of the solid from E'. Hence
¢)) Ip=I1p+2aM7 + a3M.
Suppose E' passes through the center of mass. Then 7 =0, and
we have the important result
(2) IE = IE’ + a’M
Any plane passing through the center of a mass is called a grav-
ity plane.

THEOREM. The moment of inertia with respect to any plane is
equal to the moment of inertia with respect to the parallel gravity
" plane, increased by the product of the entire mass and the square of
the distance between the planes.

Since in any set of parallel planes one and only one passes
through the center of the mass, it follows at once from (2) that
of all moments of inertia with respect to parallel planes that with
respect to the gravity plane is the least.

Parallel azes. Let Land L' be any two parallel lines. Let E'!
be the plane passed through the two lines Z and Z/, and let £ and
E" be planes through Z and L', respectively,
perpendicular to E''. Then, from (1),

Iy =TIy +2aM7 +a2M.
Adding I to both members, we have
(@) Ip+ Ign=TIg + Ign + 2a M7 4 a*M.
But, by (4), Art. 17,
T+ Ig=1I,and Ig + Ign= 1.

Also if L' (and consequently E') passes through the center of
mass, we have ¥ =0, and (3) becomes

@ L=1Iy+aM.
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Hence the theorem stated above holds when the word “plane” is
replaced by “axis.”
PROBLEMS
1. Derive formulas for the moments of inertia of plane arcs (or wires).
dns. L= j'fyﬂda; I,= j'nzaa; ds = (a2 + aynt.
2. Find I for a solid cylinder with respect to an element. Ans. § Ma®.
3. Find I for a solid sphere with respect to a tangent line. Ans. § Ma3.

4. Find I for a solid ellipsoid of semiaxes a, b, ¢ with respect to the axis a ;
with respect to a tangent line at the extremity of the axis b.
Ans. B, y8V S
3 3
5. Find I for a uniform wire in the form of an equilateral triangle of side a,

(1) with respect to a line perpendicular to the plane of the triangle and equidistant
from the vertices ; (2) with respect to a line through a vertex perpendicular to the

plane. Ans. (1) lea’
6. Find I for a solid cylinder with respect to a line perpendicular to its axis and

intersecting it at a distance ¢ from the end, the altitude of the cylinder being A and
the radius of the base c. Ans. } Mc2+ § M (h? —8hc+ 8¢3).

7. Find I for a straight rod of length a with respect to an axis perpendicular
to the rod and at a distance d from its middle point. Ans. M ((lz_; + d'),

8. Find I for an arc of a circle whose radius is a and which subtends an angle
2 o at the center, (1) with respect to an axis through its center perpendicular to its
plane ; (2) with respect to an axis through its middle point perpendicular to its plane;
(8) with respect to the diameter which bisects the arc.

a0 0012 0 (- 5520

9. Find I for the arc of the cycloid x =a(0 —sin8),y =a (1 — cosd) with
respect to the base. Ans. §3% Ma3.

19. Relation between moment of inertia of a beam and polar
moment of a right section. Consider any homogeneous straight
beam (density = ) whose elements are par-

allel to OZ. Then, by (XIX),

@ I= f /' (% + g?) dedyde

= ﬂ f @E+ > dxdy] dz.

z=constant

But f f (22 + y?) dzdy, worked out for any section z = constant,
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is the polar moment of that section for the axis 0Z (Art. 14).
Hence (1) becomes

(2) I, (tor tne veam) =Ly tor a rignt sectiony X height of cylinder (= %) x .

Let r, and 7, be the radii of gyration of beam and right sec-
tion, respectively. Then

L La_
‘ 0 -
1mass ar

IL=Mp2 I,=rpA.
Substituting in (2) gives

I,

r2= , or also
e

©)) Mr? = Arjhr.
But M = Ahkr, and hence
@ r, =Ty

THEOREM. The radius of gyration of any homogeneous beam with
respect to an azxis parallel to its elements equals the radius of gyration
of a right section with respect to the same axis.

From (4) we may write

L=Mr? I,=Arp
and hence the change from I to 1, is accomplished by replacing
the area by the mass of the cylinder. In this form the result is
useful and gives this ’

RuLe. To find the moment of inertia of a straight beam or
column with respect to an axis parallel to its elements (or edges),
work out the corresponding polar moment for any right section
and replace in this result the area by the mass of the beam or
column.

20. Combined solids and areas. Since the moment of inertia is
a definite integral, it follows that if a solid or area is composed of
two or more parts, the moment of inertia of the whole with respect
to any plane or axis is equal to the sum of the moments of inertia
of its parts with respect to that plane or axis. Also, if a portion
be removed from a solid or area, the moment of inertia of the
remainder equals the moment of inertia of the whole minus the
moment of inertia of the part removed.

As an example, consider the polar moment of inertia with
respect to its center of the circular ring formed by removing from
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a circle ¢ of radius R, a concentric circle ¢’ of radius . Denoting
the area of ¢ by A4, and that of ¢’ by A’, the polar moment of inertia
of ¢ by I, and that of ¢/ by I, we have
AR g, A
16 = 2 ’ IO = 2 *
Hence the polar moment of inertia of the re-
maining ring is

I=}(AR?—- A'P)= %(124— )

=T+ ) (B = .

The area of the ring 4 is _
A=7mR?— 73,
Hence

I=2(B+m).

That is, the polar moment of inertia with respect to its center
of a circular ring lying between two concentric circles of radii R
and r is equal to one half the product of its area by the sum of
the squares of the radii.

By the principle of Art. 19, we may at once extend this result
to apply to a hollow circular column of outer radius R and inner
radius #. Denoting by 7 the moment of inertia of the column
with respect to its axis, we have

THEOREM. The moment of tnertia of a homogeneous hollow cir-
cular column with respect to its axis 18 equal to one half the product
of its mass by the sum of the squares of the inner and outer radii.

21. Routh’s rules. The following moments of inertia occur
frequently and should be committed to memory:

The moment of inertia of

(1) a rectangle whose sides are 2a and 23 with .
respect to an axis through its center in its plane | =M < ;
perpendicular to the side 2a ] 3

with respect to an axis through its center per- ] =M a3+ 5
pendicular to its plane R S
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b

(2) an ellipse of semiaxes a and b with respect } T
=M

to the major axis (a)
with respect to the minor axis (%) =M %?;

(a circle is an ellipse with semiaxes each equal to a)

(8) an ellipsoid of semiaxes a, b, ¢, with respect — Mbﬂ +e
to the axis (a) 5

(a sphere is an ellipsoid with 2 = b = ¢)

(4) a parallelopiped whose edges are 24,25, 2 ¢, Baa
with respect to an axis through its center perpen- { =M ;’ ;
dicular to the plane containing the sides 4 and ¢

(5) acircular cone the radius of whose base is a
with respect to its axis

3
= 55 Ma.

As an aid to the memory, the first four rules may be combined
into one known as Routh’s rule:

Moment of inertia (Sum of squares of per-)
with respect to an | = Mass x pendicular semiaxes
axis of symmetry 3,4, or 5

The denominator is to be 8, 4, or 5, according as the body is
rectangular, elliptical, or ellipsoidal.

As an example of the application of Routh’s rule, suppose it is
required to find the moment of inertia of a circle of radius @ with
respect to a diameter. We notice that the perpendicular semi-
axis in its plane is a and the semiaxis perpendxcular to its plane
is zero. Hence the moment of inertia is M % Z . Agam, let it be
required to find the moment of inertia with respect to a line
through the center of the circle and perpendicular to its plane.
The perpendicular semiaxes are each equal to a and the moment
of inertia is

'

PROBLEMS

1. Find the moment of inertia of the hollow column of Art. 20 with respect to
8 line perpendicular to the X Y-plane, (1) through the outer circumference;

(2) through the inner circumference. Ans. (1) %{ BR +1); %l (B +810).
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2. Find the moment of inertia of the circular ring, Art. 20, relative_to OX.
Ans. %(m +19).

8. Find the moment of inertia of the ring with respect to the tangents to the
circles ¢ and ¢'.

4. Find the moment of inertia of a circular area having a smaller circular area
cut from it as in the figure, (1) with respect to a line through O perpendicular to
the plane of the circle; (2) with respect to a diameter of the larger circle perpen-
dicular to 00’; (8) with respect to a line through O’ perpendicular to the plane of
the circle ; (4) with respect to the diameter 00'.

4ns. (1) Y ¥R; (2) HMR; (3) H MR
4) }} MR

5. A square is removed from a circle, the diag-
onals of the square intersecting at the center of the
circle. Find I with respect to (1) an axis passing
through the center of the circle perpendicular to its
plane; (2) an axis perpendicular to the plane and
passing through one corner of the square ; (3) a diam-
eter which is also a diagonal of the square.

6. Find the moment of inertia with respect to the gravity axis parallel to an
edge of the beams whose cross sections are shown in the following figures.

a

22. System of material particles. By a material particle, or
simply particle, is meant a portion of matter of so small a volume
that the volume is regarded as reduced to a point. In other
words, it is a ‘weighted point or point mass. The moment of mass
of a particle of mass m at the point P with respect to any line or
plane equals the product of m by the perpendicular distance to P
from the line or plane. ’
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The center of mass of any system of particles of mass m, at
P(2y Y1r 2,) my 8t Py(2y, Y 2,), etc., is defined by the equations

[~ _mz, + mgzy + - _Zmz

z [}
my + my + - Em
= MYy + My + - Zmy
(1) 1Y my + my 4 - Sm’

myzy + mezy + - _ Zmz
| my + mg+ - Zin

wl
I

Similarly, the moment of fiertia of a particle of mass m at P
with respect to any axis equals the product of m by the square of
the perpendicular distance from P to the axis.

Thus for a system of particles lying in one plane whose masses
are m; at P (zy, y,), my at Py(z, y3), etc., we have

1= mlyl’ + myyy? + oo = Zmy?,
I, =mz? + mez? + ... =3Imad,
IL=1I+1I,=3m(2?+ y’) = Zmp3.
PROBLEMS
1. Three edges of a unit cubical frame without weight are taken as the cosrdi-
nate axes, and particles are placed at all the corners except at the origin. Find

with respect to each face, edge, and vertex of the cube, (1) when the particles are
of equal mass; (2) when the masses vary as the squares of their distances from the
origin.
2. A straight rod of negligible mass and length @ has five particles of equal mass
“situated on it at equal intervals of }a. Find I and 73, (1) with respect to one end;
(2) with respect to the middle point ; (3) find 7 when the masses increase in arith-
metical progression from the end. .

3. Given three particles of equal mass, situated at the vertices of an equilateral
triangle. Find (1) Iand »,® with respect to one side; (2) with respect to a line
parallel to one side passing through the opposite vertex.

4. A regular hexagon has particles at middle points of five of its sides. The
masses of the particles taken in order are as 1,2, 8,4, 5. Find I and re® with
respect to the unweighted side. Ans. I=20.25 a2; ro=1.85q2

23. Ellipse of inertia. This section is concerned with the solu-
tion of the problem,

To determine the moment of inertia of an area with respect to any
gravity azis. Let O be the center of mass of a given area; 0X,
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0Y any two mutually perpendicular axes through it, and
any other gravity axis making with OX the angle 6. Then, by
Art. 11, (1),

@ L= f f PdA,

where r is the perpendicular distance
from ! to any interior point (z, y) of
¥ the area. The equation of ! may be

written
(&) ‘ —2s8in 0 + ycos § = 0,
and hence (66, Chapter XIV) we have
® | r= —zsinfd + ycos ,

when (z, y) is the interior point in question. Substituting in (1),
(C)) 1}=ff(—xsin0+ycos€)’dA, or,

1;=sin’0ffw’dA—2sin00080ffxydA+cos’0ffy’dA.

The second integral in the right-hand member has not thus far
been discussed. If we set this equal to P,,, we may write

() Li=1I,co0830 — 2 P_,sin 6§ cos 6 + I,sin34,
where

(XX) Poy= f f oy dA,

and is called the product of inertia with respect to the axes OX
and OY. It is easy to see that 7, assumes a maximum and a
minimum value as the axis [ rotates about O. In fact, since

) %1= —21I,cos0sinf — 2P, (cos?8 —sin?f)+ 2.1, 8in 6 cos b,

setting the right-hand member equal to zero gives

M (L, — I)sin20—-2P,_ cos20 =0,
. 2P
=.____'t'_.
from which tan 260 -1

The values of 8 determined by this equation will give axes [, and
I, for which Z; is a maximum and a minimum respectively. More-
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over, since these values of @ differ by %, l; and 4 are perpendic-

ular. They are called the principal axes of inertia.

Obviously, if P,, = 0, the roots of (7) are 6 =0, 0=-7£,a.ud
hence OX and OY are already the principal axes. Let us now
assume this to be the case. Then (6) becomes

() I, =1I,cos?6 + I, sin3 6.
Introducing the radii of gyration by setting
I, =Ard, I,.=Ar?2 L=Arp}
then (8) becomes
(XXD 73 =15 cost § + 2 8int §.

This equation gives the radius of gyration with respect to any
axis in terms of the principal radii of gyration, r, and r,. For
convenience we now write

1 1
©)) o= = ry= 7

Y

Thus (XXI) becomes .
10) rp= cos? @ + gin% 6

a? b
Let us now draw the ellipse,
2.4
an 1= at%

If (p, ) are the polar coordinates of the point P where the axis
{ cuts this ellipse, then in (11)

z=pcosd, y=psind, and we get
1= pieos? p3sin%

12) == +Eg o or also
1_cos?d  sin?f
P @ B
Comparison with (10) gives the result
(18) r,’ = ’%2.

The ellipse (11) is called the ellipse of tnertia, and the result
indicated by (13) may be stated thus:
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A
If the elhpcv qf %wrtza 18 drczm Sfor any plane area, the radius

of gyration for any gravity am;t%als the reciprocal of the radiuaé'T
vector of the point in which the ntersects the ellipse.

The principal axes of inertia are those for which the product
of inertia is zero; that is,

P, = f f zydzdy = 0.

It is easy to see that P, = 0 if either OX or OY is an axis of
symmetry. For example, if OX is such an axis, then in the sum
of the products
zyAzAy
the terms will occur in pairs with the same
z and with y’s differing only in sign. The
terms in each such pair will cancel, and
hence the limit of the sum is also zero. This
consideration gives the result :
Any azis of symmetry 18 mnecessarily a
principal azis.
The process, then, of determining the moment of inertia with
respect to any gravity axis is the following :

(1) If the figure has no axis of symmetry, choose any pair of
rectangular axes, calculate I, and I, by (IX), and P,, by (XX).
Then use equation (5), or solve equation (7) for § and determine
the principal axes and the principal radii of gyration. Choose
these axes for the new axes of coordinates and draw the ellipse of
inertia (11). Then apply the theorem just stated to find r; or
use (XXI).

(2) If the figure has an axis of symmetry, choose this for
OX or OY, calculate r, and 7, and draw
the ellipse of inertia (11) or use (XXI). bt

TLLusTRATIVE ExampLe. Find the moment of
inertia for any gravity axis of a rectangle.

Solution. Taking OX and OY as in the figure, 37/

then Aa® Ab2
L—Ta' I'=T1 X’\ x
2
and R =¥3':, ri= %-,

and the equation of the ellipse of inertia is
) akz? 4 by =38 Y
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The radius of gyration for any gravity axis is then the reciprocal of the radius
vector of its point of intersection with the ellipse, or also, by (XXI),
n = $(a?cos? @ + b?sin? 6).

PROBLEMS

1. Show that the ellipse of inertia for any regular polygon is & circle. What is

the conclusion regarding the moment of inertia with respect to any gravity axis?
2. Find I for a rectangle whose sides are 2 g and 2 b with respect to a diagonal.

2 a3bh?
Ans. 3 M. m.
8. Find I for an isosceles triangle with respect to an axis through its center of
area and inclined at an angle & to its axis of symmetry, a being its altitude and 2 b
its base. Ans. } M(} a®cos® o + b?sint ar).
4. Find I for an ellipse with respect to a diameter making an angle & with the
major axis.

Ans. I= i]!l(b’coa2 @ + a?sin? @) = i-y"-:;f, where r =% diameter.



CHAPTER II
KINEMATICS OF A POINT. RECTILINEAR MOTION

That portion of mechanics which is concerned with the study
of motion is called dynamics. The subject matter of dynamics is
divided into two parts, kinematics and kinetics. Kinematics treats
of pure motion, that is, motion without reference to the mass of
the body which is moving or the forces producing the motion. It
has to do solely with the relations of time and space. Kinetics
treats of motion, including consideration of the mass of the body
moved and the forces acting upon it. This chapter treats of the
kinematics of a point which moves on a straight line.

24. Motion on a straight line. In order to indicate the posi-
tion of a point upon a line, we select on that line a fixed point O,

[

7] z P X

called the origin. The position of any point P with respect to 0
may then be determined by the length OP and its direction from
the origin. For the application of mathematical analysis to the
rectilinear motion of a point, it is necessary to regard the path as a
directed line;* that is, we must assume an origin, a unit of length,
and a direction. If the measure of the length OP be denoted by z,
then it is obvious that z is variable if P is a moving point. The
motion of P is said to be completely determined when the posi-
tion of P is known at every instant of time; that is, when the
variable z is a functiont of the time ¢, since the position is
determined by the value of 2. Hence for rectilinear motion we
have the relation

¢)) x=¢ ().

This equation is called the equation of motion. Its significance
is this, that from it we may find the position of the moving point
at any instant of time.

* Analytic Geometry, p. 23. t Calculus, p. 12.
42
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In order to indicate instants of time it is necessary to select
some fixed instant from which the time may be reckoned, forward
and backward.

This fixed instant, called the origin of time, is denoted by
t =0, and time b¢fore is indicated by a minus sign, time after by a
plus sign.

The position of the moving point when ¢=0 is called the
tnitial position. The corresponding value of z is called the initial
value of z and is denoted by z,. From (I) we have,

For example, if the equation of motion of a mov-
ing point is 2 =8 — 2¢, we find the table of values of

t and z as given. Wae see, therefore, that the point

x-12-0 X3 x=8
B -4
t1 l-g 3 4 i
Sul >,

moves from the initial position O to the left and,
after reaching the extreme position z=—1, there-
after moves continuously to the right. ete. | ete.

As a second example, consider the motion defined
by the equation z=acos 4 mt. Remembering from trigonometry
that the cosine of a variable, increasing angle varies
t | = | from 1to —1 inclusive, it is plain that with increas-
ing time, z varies from a to — a inclusive; that is,

o~

4

[N S ]

0
-1
0
3
8

0 a

1 0 ———a

2 [—a

8 | 0| the moving point P oscillates between the points'
4 a| A and A’ of the figure. The initial position is A,

etc. |etc. | since Zgp=a, and the point is again at A after the
lapse of four seconds.

The vibratory motion just discussed is an example of simple
harmonic motion, and will appear frequently in these pages.

25. Velocity. By the velocity at any instant of a point in
rectilinear motion is meant the time-rate of change of its position
at that instant. When the equation of motion is z= ¢ (¢), the
velocity is the rate of change of z with respect to ¢; that is,® the

* Calculus, p. 148,
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derivative of z with respect to ¢. Hence, denoting the velocity at
any instant by v, we have

Aan v=22-¢' ).

The value of the velocity at the origin of time is called the ¢nitial
velocity, and is denoted by v, From (II), we have

v=¢' (0).

Dimensions. Velocity is defined as the limit of the quotient
of distance Az by time At. The derived unit of velocity is
therefore expressed in terms of the fundamental units of length
and of time by the dimensional equation

Velocity =

.

lengtl
time

If v=¢' (¢) is positive for the value t = ¢,, we know that at
the instant ¢ = ¢, z = ¢ (¢) is an increasing function® of ¢, and the
point is moving towards the right along the directed line OX.
If v is negative, z is a decreasing function of ¢, and the point is
moving towards the left. If for ¢ = ¢,, v; = ¢' (¢,) = 0, the point
at the instant ¢ =¢, is at rest. If the velocity is constant, the
motion is said to be uniform. The numerical value of the velocity
is called the speed.

For example, to discuss the velocity of a point when its
equation of motion is z =1 — 2¢, we find, by differentiation,
v=2t— 2. Giving ¢ successive values, we ob-
t | = | v | tain the values in the table. The point 0 is the

-1 N 1 2 3
0 [ X

-2

— 1| o0 | initial position, and — 2 the initial velocity.
2
4

4

0 The point is therefore moving in the negative
38 direction along the line OX with a speed of 2
etc. |ete. |ete.| units of distance per unit of time.t+ At the in-
stant ¢ =1 the velocity is zero and the point
is at rest. For values of ¢ greater than 1 the velocity is positive,
and the point moves in the positive direction along 0X.

WM MO

# Calculus, p. 116.
1 That is, two feet per second, if the unit of distance is one foot and the unit of time
one second.
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26. Acceleration. If the velocity of a moving point is variable,
the point is said to have acceleration. In mathematical terms,
acceleration is the time-rate of change of velocity. That is,
acceleration at any instant is the derivative of velocity with
respect to the time. Hence, denoting acceleration at any instant
by f, we have

dv_ad d*x
1) f=ﬁ=d—t(%})=ﬁ;
or, acceleration is the second derivative of the distance with
respect to the time. When the equation of motion is z = ¢(t),
we obtain, by differentiation,

d?r "
=— = t).
F=2E =90
The acceleration may be expressed in another form, which is
frequently useful in the solution of problems in mechanics. We

have z = ¢(¢), and this may be solved for ¢, giving
@ t=Y(2)-

The velocity is a function of ¢; namely, v = ¢/(¢). When the
value of ¢ from (1) is substituted in this expression for the velocity,
we have v expressed as a function of z.

@ v = F(z).
This expression determines the velocity when the position is
known. We have, from calculus,*

do_dv do
dt dz dt
Since v= ;Z—:, therefore, f = og—:.
For convenience, the preceding results may be summarized :
I. Equation of motion,? x=6¢ ().
II. Velocity at any instant, v=2%2_¢ .

d
IIL Acceleration at any instant, /=5 ="g =" @®) =v5 .

*p, 57.
1 Other letters, e.g. y, s, will be used also to denote the position of the point P.
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The physical meaning of the algebraic sign of the acceleration
is made apparent by the following consideration. If the point P
moves along OX towards the right, the velocity is positive; if
towards the left, the velocity is negative. The acceleration is
positive if v increases algebraically, and negative if v decreases
algebraically. Hence, if

P moves to the right with increasing speed,v > 0, f > 0;
P « “ e “ 3 decreaa'ng' “ v > 0, f < 0;
P o« o« o« loft “ inereasing “ v < 0,f < 0;
P« “ o “ “ dem.eaaing‘ “ v < O,f > 0.

If the acceleration is constant, the motion is said to be uni-
Jormly accelerated. The special case -when the acceleration is
zero, and hence the velocity constant, has been already referred to
in Art. 25 as that of uniform motion.

Dimensions. Acceleration is defined as the limit of the quo-
tient of velocity Av by time At. Its dimensions are therefore
velocity divided by time, or distance divided by the square of the
time. The relation between the derived unit of acceleration and
the fundamental units of length and of time is expressed by the
dimensional equation

Acceleration = l_gx_l_gil}_
time2

Two systems of units are in common use, the English and
French. These are given in the table:

Units - English French
distance foot centimeter
time second second
velocity 1 ft. per sec. 1 cm. per sec.

acceleration 1 ft. per sec. in 1 sec. 1 cm. per sec. in 1 sec.

27. Distance-time diagram. Discussion. The preceding dis-
cussion has shown that distance, velocity, and acceleration of a
moving point are functions of the time. The determination of
the variation of these variables with the time constitutes the dis-
cussion of the motion. The graph of the equation of motion is
very useful in making the discussion. Since z is a function of ¢,
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we may plot the curve represented by the equation z= ¢ (t),
where ¢ is the abscissa and z the ordinate. This curve is called
the distance-time diagram. For a
given instant of time, ¢, we have
a given value of the abscissa; e.g.
OA in the figure. The correspond-
ing value of z is the ordinate 4B and
the position* on the path 0X is P,.
Since the velocity is the derivative of z with respect to ¢, its
value is given geometrically by the slope of the tangent at B; that
is, by tan @. The numerical value of the acceleration is not given
directly by the figure, but its sign is determined by noticing the
form of the curve. If the curve is concave upwards, the sign of
the acceleration is positive; if concave downwards, the sign is
negative.t Maximum and minimum points on the graph of the
equation of motion indicate extreme} positions of the point mov-
ing on the straight line; that is, positions where the velocity
is zero. At such a point the velocity changes sign. With refer-
ence to the moving point P this means that it ceases to move in
one direction and begins to move in the opposite direction. A
maximum point corresponds to an extreme position upwards, since
the first derivative changes from plus to minus. For a maximum
point the second derivative is negative; hence for an extreme up-
ward position the acceleration is negative. Similarly, a minimum
point corresponds to an extreme downward position and the accel-
eration is positive. A point of inflection on the graph of the equa-
tion of motion indicates that at the corresponding instant of time
the acceleration (which is the second derivative of z with respect
to t) is zero. When the characteristics of the motion have been
ascertained from this discussion, it will be convenient to take the
path along a horizontal line. The properties already known of
the motion on the X-axis are readily interpreted on the horizontal

path.

* The student must be careful not to confuse the distance-time curve with the path
of the point. The path lies on OX, and the position of the point at any instant, ¢,, is
found by constructing the point B in the diagram whose abscissa equals ¢;, and then
projecting this point on to the distance axis, as P; in the figure.

t Calculus, Chapter IX.

1 The word ‘‘ extreme '’ here means relative extrems, just as in geometry the word
‘“ maximum " means relative maximum.
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ILLUSTRATIVE EXAMPLES
1. Discuss and draw the distance-time diagram for the motion defined by

) z=08-30+2¢
Solution. By differentiation, we obtain

@) - v=382—-6¢+2,
3 . f=6t—-86.

The extreme positions of the moving point, and consequently the maximum and
minimum points on the graph, are given by the condition,

0=38-6¢+2=0,

whence t=1+ -‘5-/}_3 , or approximately

t; =04, & =1.6.
The corresponding values of x are approximately
x = 0.38, 23 = — 0.38.
X For t < 0.4 the velocity is positive.
L For 0.4 < ¢ < 1.6 the velocity is negative.
3 For ¢ > 1.6 the velocity is positive.
2 The acceleration is zero, and consequently there is

| a point of inflection on the graph when ¢ = 1. The cor-
responding value of z is 0. For ¢< 1 the acceleration is
0| do

" negative, and since f= @’ the velocity is decreasing

(algebraically). For ¢> 1, the acceleration is positive and the velocity is in-
creasing. The distance-time diagram may now be drawn. We may summarize
the results obtained in the following table :

t z S a
0. 0. 2. —6.
0.4 0.38 0. ~-3.6
1. 0. -1, 0.
1.6 —0.38 0. +36
2. 0. 2. 6.
8. 6. 11. 12.
increases increases increases increases

This table and the preceding graph are equivalent.

From either we may

make the discussion of the motion, and in the solution of problems each should

serve as an aid to and a check upon the other.
& horizontal line follows.

The discussion of the motion on
When ¢ is zero the point P is at 0. As ¢ increases

from 0 to 0.4, P moves to the right with a velocity which is decreasing numeri-
cally, When ¢ = 0.4, the velocity is zero and the point P is at an extreme position
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2z = 0.88 to the right (the acceleration is negative). As ¢ increases from 0.4 to 1.6,
the point moves to the left. When ¢ = 1.6, the velocity is again zero and the point

58 I3 ¢ Paluseofs

Proom 3 Values of ¢
is at an extreme position 2z = — 0.88 to the left (the acceleration is positive). As¢
increases from the value 1.8, the point moves always to the right with increasing
velocity and acceleration.

2. Discuss and draw the distance-time diagram for the motion defined by
(¢)) z = acos kt.
Solution. Differentiating, we obtain
(2) v = — aksin kt,
and for the acceleration, differentiating (2),
(8) J=— ak?cos kt = — k% [from (1)].
Hence the acceleration and distance are proportional and differ in sign. Such
& motion is called a simple harmonic motion.

The locus of (1) is a cosine curve, the properties of which are well known.
The graph of the equation of motion has maxima when k¢ =2 nx (n any integer),

la

1
O[ Kt=¥ Wt-x  _JRe-F Ki-2wT
-a

minima when k¢ = (2n+ 1), and points of inflection when ¢ =§2"T+12,. At

any maximum point the ordinate is equal to a, and at any minimum point it is
equal to —a. The variation of z, v, and f is exhibited in the table.

Angle k¢ t -] v S
0 0 a 0 —ak?
r X 0 - 0
2 2k ok

r - 0 1
r % a a
8» 8r
on pal 0
2 2k ok 0
2r ”k_' a 0 —ak?
ete. etc. etc. etc. ete.

It is now easy to make the discussion of the motion. When ¢ =0, 2, = a, v,=0,
/o 18 negative, and the point starts from an extreme position to the right. As ¢
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increases from 0 wi. the figure [see also (2)] shows that the slope of the tangent

line (and consequently also the velocity) is negative, and the point moves towards
the left. When ¢=;c', %= —a, o=0,f>0 and the point is at an extreme posi-

tion to the left. As ¢ increases from ¥ to ¥ the velocity is positive and the point
moves to the right. When ¢ = 2;];-, we ha.ve again the initial valuesof z,v,and /. As

¢ increases from the value 2.7 + T the motion just described is repeated again and again,
The motion i8 a vibration or oscillation between the points N and N7 of the figure.

N -0 . a Nm“ﬁ
3 [} teg, Vém i

ot
- -

The distance g is called the amplitude of the vibration. The time required to
move from N to N7 and back toNagainis-“’T'. This is called the period of the

vibration. The point midway between N and N' (the point 0 in the figure) is
called the center of the vibration.

The periodicity of the motion may be best established by reasoning thus. We
note first that the series of values of any trigonometric function is repeated when the
angle has increased 2 » radians. Since z, v, and f are in this case dependent in their
variation upon sine or cosine, then it is plain that they Aassume their original values
when k¢ has increased to k¢ + 2 x. But

Id+2r—k(t+ —)

Hence ¢ has changed to ¢ + 2%, and the increment-;' is accordingly the period.

k

8. Discuss the motion defined by
w % = Acos (kt + B).

Solution. The distance-time diagram is again a cosine curve with 4 for maxi-
mum displacement. The difference from the preceding example consists in this :
the initial position on the path is not at an extreme position, but at zo = A cos B.
The conclusion is, therefore :

The equation (1) represents a harmonic motion with the period 2 ', ard this is
true for all values of A and B.

Equation (1) is the general solution of the equation 71, Chapter XIV, which is
called the differential equation of harmonic motion. The statement just made ex-
plains the designation.

4. Discuss the motion defined by

1) z = aet.

Solution. Differentiating and using (1), we obtain
@ v=—aet=—2z
® f=aet=u2
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In this case, therefore, the acceleration and distance are prpport.ional and agree
in sign. From (1)z = %, and therefore z, which is always positive, decreases

numerically as ¢ increases; v is always negative and
decreases numerically (that is, the speed decreases). -v—-'J’—i

The graph is now readily drawn and exhibits
the motion of a point from N towards O with
constantly diminishing speed and acceleration. o T
The motion dies away as O is approached. There is obviously no period, and the
motion is called aperiodic.

5. Discuss and draw the graph of the equation of motion,
@ z = ae—a¢ cos kt,
a, a, k being arbitrary, Poaitive constants.
Solution. Differentiating, we obtain for v and f the expressions,
@ v = — ae~*(x cos k¢ + k sink¢),
(8) S = ae[2 aksin kt + (o8 — k3) cos kt].
The graph of (1) is readily constructed and the characteristics of the motion ap-
pear from it. Write (1) in the form of a product,
(4) x =ae—*t.coskt.
» The factor cos k¢ varies
"N from —1 to+ 1. Hence the
d distance z varies from — ge—o
\«.N__ Cosine Curve to 4 ae—-a; that is, the graph
% T — of (4) is bounded by the curves
4 (6) z= —ae o,z =ae .
NN AR These are the dotted lines
-a = ) of the figure.
- Again, the product in (4)
1 e vanishes only when one of the
factors is zero. But e—o¢ is
never zero for finite time. Hence 2 = 0 when and only when cos k¢ = 0.
Furthermore, the graph touches # the boundary curve when cos kt =+1. We
therefore draw also the quxiliary curve z; = cos k. We now observe that
(1) Thepoints of contact with the boundary curves are directly over (or under)
the maximum and minimum points on the cosine curve.
(2) The required curve crossesthe T-axis at the same points as the cosine curve.
The graph may now be drawn, for we have merely to construct a winding
curve from the initial point ¢ = 0, 2 = @, which shall cross OT at M,, M;, M;, etc.,
and touch the boundary curves at points corresponding to M;, My, etc.
From this construction it is obvious that maximum and minimum values of X
occur between each intersection on OX and the succeeding point of contact with

7

3k
B
i

* For when cos kt = &1, then sin k¢ =0, and we find from (2) v = Faae—2t. This
equals :—:, from (5). Hence the slope of (4) at M, M, etc., is the slope of the proper
boundary curve (5).
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the boundary curve; that is, for a value of ¢ between successive odd and even
maltiples of 2!7‘. In fact, from (2), v =0, when

(6) @ cos kt + ksin k¢t = 0 or tan kt = ‘:.

Now the tangent is negative when the angle is of the second or fourth quad-

3

ranta. Hence k¢ must lie between = 2 and 2', or 2' and 4—2'-', etc., or ¢ is between

successive odd and even multiples of 2—k

The characteristics of the motion are now obvious. It may be described as a
vibration with constantly diminishing amplitude. Remembering that the simple
harmonic motion represented by the factor a cos k¢t of (1) has the constant ampli-
tude g, it is plain that the presence of the second factor e—4¢ accounts for the dimin-
ishing amplitude.

This factor diminishes as ¢ increases, and is called the damping Jactor. The
motion is called damped vibration.

From (6), it appears that a period of time equal to 3{_ (from ¥t = 2 r) must
elapse between successive maxima. The motion is accordingly said to have a period
equal to 2—: , the same, namely, as the period of the undamped harmonic vibration

(Ex. 2).
The successive amplitudes obey a simple law. For such positions differ by a
semi-period, and hence two such values of x may be written in the form
7 =ae, z3=ae-(**])
Taking natural logarithms and subtracting, we obtain

L4

log z; — logzs = ;
That is, the logarithms of successive amplitudes form a decreasing arithmetical

progression.
This is otherwise expressed by the statement that the logarithmic decrement of

the amplitude is constant.
6. Discuss the motion whose equation is
(¢)) 2 =Ce m cos (It + v),
in which C, pu, I, and ¥ are arbitrary constants, u being positive.

Solution. The construction of the graph is precisely as in the previous ex-
ample ; namely, the boundary curves are

(2) x = 4 Cent,
and the auziliary cosine curve is
3 2y = cos (It + 7).

The difference from the preceding case is in the initial position, which is now
zo = Ccosvy, an arbitrary point on the path, not necessarily (y = 0) an extreme
position.

The result is then this :

The motion defined by (1) is @ damped vibration with the penod —. and this is
true for all values of C, v, 1, and u, provided u > 0.



KINEMATICS OF A POINT. RECTILINEAR MOTION 53

Equation (1) hasthe form of the general solution of the equation 78, Chapter XIV,
which is called the differential equation of damped vibration. The theorem just

stated explains this designation.

1. Show that each of the following motions is uniforin or uniformly accel-
erated, draw the distance-time diagrams and discuss the motion :

(a) z=2—4¢;

) y=at+d;

(c) s=6t—167;
d) y=10—t—38p;
(e) z=a+ bt + c?;
() s=19g8 +v¢;
(9) y=v¢t — § g8%;

(R) s=vpt+ h;

() 8=198 + v + 8;
(J) y=560+10t—164;
(k) 8=4gsine.22;

M s=vt—4gsine-?;
(m)xz=1000t— 186 2;
(n) y=—1000¢+ 1048,

2. Show that the distance-time diagrams of uniform and of uniformly acceler-
ated motion are respectively a straight line and a parabola.

3. Show that each of the following is a simple harmonic motion.®* Draw the
distance-time diagrams, discuss the motion, and find the amplitude a and period 7'

in each case.
(@) x=>5bsint;
() y=10cost;
(¢) s=2cos }{nt;
(d) x=>58in §x¢;
(e) y=asinkt;
(f)z="6cos (t+}7);

(9) y=10sin (}wt—}=);
(h) y=sint 4 cost;

() s=asin(kt+a);
(§) z="bcos (ut—B);

(k) z=2sint + 8cost.

() z=acos kt+ bsin kt.

Answers denoting emplitude by a and period by T.

(@) a=56,T=2r;
®) a=10,T=2r;
(¢) a=2, T=4;

@ a=51=4;

(e) a=a,.T=2k—';
(f) a=6, T=2x;
(9 a=10,T=4;

(h) a=V2, T=2x;

0 a=a,T=27';

() a=b, T=2%;
I

k) a=VI3, T=2x;

M) a= VAT T=2—k'-

® Show that the given equation is obtained from z = 4 cos (k¢ + B) by replacing the

constants A4, k, B by particular values.

B=-"1.

2

Forz=5cos(t-—§)=5cos (%—-t)zaslnt.

Thus for (a), z =5sin¢, we set 4 =5,k=1,
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4, Show that the acceleration and the distance are proportional and differ in
sign for each of the following motions (simple harmonic):

(@) z=Asin (kt+ @) + Bcoskt ;

(b) y=Asinkt + acos (kt + B) ;

(¢) 8= asin (ut — &) + bcos (ut — B).
Reduce each to the form A cos (k¢ + B).

5. Discuss and draw the distance-time diagram of each of the following motions
and show that each is a damped vibration.*

(@) x=6e¥cos }ut; () z=ae Painkt;

() y=2e ®'sinjut; h) y=6eVsint +17);

() s=10e¥cos¢; T(@) s=e *(asinkt+ booskt);
@) z=>5e bsin¢; 1

G =z= 106—71008!;
(®) s=¢“sin(ke +B);
y=8eHui{Zc+n}; () y=e"*cos (kt +B).

8. Discuss and draw t the distance-time diagrams of the following equations of
motion:

O) x=e"cos(t+§);

(@) z=sint+cos2t; (@) y=ettcost +sint;
() z=alog(1-1); (e) y=sin}t+sin¢;
©) y=3+e; (f)y=e’cost + 10sint.

7. Show that every solution of % + us =\, where g and A\ are constants and

# <0, defines a harmonic motion. Find the period and the center.
Ans. T = 2—t; (b, 0)-
Va \#
8. When will solutions of % +2 p% + A8 =0 define damped vibrations ?
Ans. A>ul,
9. Discuss and draw the distance-time diagrams of the following equations of
motion :

(a) z=t¢tsint; (c) 8= (t+1)cost; (e) y=%’5;;
(8) y=etcost; @ ==t o ,=‘m(,+§).

10. Discnss and draw the distance-time diagrams of the following equations of
motion ;

(@) x=sint + 2; (e) x=ae *coskt + b;

(b) y=cost—10; (f)z=acoskt +b;

(¢) s=e‘cost+1; (9) y=acoskt+bsinkt+¢;
(d) e=10e¥cost +5; (k) 8= Asin (kt +8) + b.

* Bhow that the given equation is obtained from (1), p. 52, by giving to C, x, I, and
y particular values.

t When the function of the time is the sum of two simple functions, we may draw
the graphs of the latter and add the corresponding ordinates. For example, in (a), add
the ordinates of ; = sin t and zg=cos 2¢.




CHAPTER III
KINEMATICS OF A POINT. CURVILINEAR MOTION

28. Position in a plane or in space. Vectors. In the discus-
sion of the rectilinear motion of a point the quantities involved
were time ¢, position on the straight line z, velocity v, speed s,
and acceleration f. Any value of ¢ z, v, or f is indicated by a
single number (positive or zero or negative), and any value of 8 is
indicated by a single number (positive or zero). Quantities which
take on values that can be indicated by single numbers are called
scalar quantities. Such quantities have magnitude (4 or —) only.
A vector quantity is one which has magnitude and direction. For
example, (1) the position of a point P(p, #) in a plane is indicated
by its distance from the origin (magnitude) and the angle which
OP makes with the initial line; (2) the position of a point P(p,¢,6)
in space is indicated by its distance from the origin and the
direction of theline OP.* Since a scalar quantity has magnitude
only, any value which it may take on can be represented graphic-
ally by the length of a line taken in the proper algebraic sense.
To represent a vector quantity graphically the line must have
length and direction. By indicating the direction properly the
length may always be taken as positive. Hence we make the
definition, a vector is a straight line having length and direction.
From this definition we conclude that two vectors "
AB and A" B'" are equal if the lines AB and A" B'" '
are parallel, equal in length, and taken in the same
sense. If the lines are parallel and equal in length, | . [.
but taken in the opposite sense, that is, if the di-
rections differ by 180°, as AB and A'B’', we say AB=— A'B'.
A vector is zero if, and only if, its length is zero. In solving
problems involving vectors we may always replace a vector by
an equal vector, which is equivalent to saying that a vector may
be moved providing it is kept always parallel to its original posi-

tion.
* Analytic Geometry, p. 3%4.
bb
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29. Addition of two vectors. If a point is moved in a plane,
the displacement is a vector quantity. Suppose a point is moved
from the origin to the position A(2, 4). The displacement is rep-
resented by a vector whose length 04 = v20 and whose direc-

tion is indicated by the angle @ which

the line OA makes with the X-axis.

5y Suppose the point is given a second

' displacement from 4 (2, 4) to B (5, 3).

—~@X This displacement is represented by

the vector AB, whose magnitude is V(2—5)%+ (4—3)3=V10,

and whose direction is given by the angle ¢. These two dis-

placements taken in order are evidently equivalent to a single

displacement from O to B, which is represented by the vector OB,

the magnitude of which is V31 and whose direction is given by

the angle 4. Hence we say that the vector OB is the sum of the
vectors OA and AB.

Aeg

(]

OB = 0A + AB.

If two vectors AB and DE are given, we obtain the sum
AB+ DE in the following manner. From the point B construct
a vector BC=DE. The vector AC is now
defined as the sum of AB and BC, and, there- g

fore, as the sum of AB and DE.
AB+ BC=AC.
...AB+ DE = AC. 4

The process of adding two vectors is essentially this. Bring
the two vectors into such a position that they form a broken line
ABC. Their sum is then equal to the closing

E
(4]

B
line AC. It is readily seen that the order of
addition can be changed without altering the
sum.
AT AB + BC= BC+ AB.

The figure is a parallelogram and the proof is obvious.

Addition of any number of vectors. The preceding process is
applicable to the addition of any number of vectors. Suppose it
is required to find the sum of the vectors A4,B,, B,(,, C,D,, and
D,E,. Thisis accomplished by repeated application of the process
of adding two vectors.
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(1) Construct the vectors AB and BC eqﬁal respectively to
A;B; and B;C;. The sum of these two vectors is AC.

.. A,B, + B,C, = AC. o,
(2) Construct (D = C;D,. The sum S
of ACand OD is AD. That is, /‘3'\0 B2
4 ]
E_ QD

AB, + B,C, + C;D, = AD.

(8) Construct DE= D,E,. The sum
of AD and DEis AE. Therefore, ﬂ

A,B, + B,C,+ C,D, + D,E, = AE. " \J
The process is applicable to any num- 4 0
ber of vectors and is essentially this. To add any number of
vectors, form a broken line having its segments equal, respec-
tively, to the given vectors; the sum is then the closing line.*
Since the order of addition of two vectors may be changed with-
out changing the sum, the order of addition of any number of
vectors may be changed without changing the sum.

The sum of any number of vectors is called the resultant of

those vectors.

30. Subtraction of vectors. Any vector AB may be sub-
tracted from the vector CD by adding to C'D the negative of AB.
In the figure DE=—ABand CE= CD + DE= CD — AB.

For practical purposes it is more convenient to obtain the

difference of two vectors as follows: To

:_’;' p subtract AB from CD, lay off the two vectors
from the same origin; that is, construct
D s CF =AB. Then
¢ © CF+ FD = AB + FD = CD.
¥ Whence, by transposing the term AB,

Fia-b FD = CD — AB.

The results of the two methods are equal, as can be shown by
comparing the equal triangles, figure a and figure b.

31. Muitiplication of a vector by a scalar. If a vector AB is
multiplied by a positive scalar W, the result is a vector A'B’

® Analytic Geometry, p. 47.
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having the same direction as AB, while the magnitude of A'B' is
W times the magnitude of AB. For example, in the figure (a),

A'B'= 2AB.

If a vector AB is multiplied by a nega-
tive scalar — W, the result is a vector B'A’
Fig.a which has a direction opposite to that of
AB and a magnitude equal to W times the
magnitude of AB. For example, in the
Fig.b figure (3),

B'A'= —2AB.

To divide a vector by a scalar W, we multiply the vector by%-
For example, in figure a,

AB=}A'B
and in figure b, AB=—-}BA.

32. Resolution of plane vectors. Suppose a vector AB is given
and it is required to find two vectors which are equivalent to AB,
that is, whose sum is equal to AB. This may be done in an infi-
nite number of ways. For, suppose C is any point, and the lines
AC and CB are drawn. Then, by the definition of a vector sum,

AC+ CB= AB.

The point €' may be determined so that the vectors AC and CB
are parallel to the X- and Y-axes respectively.. This is accom-
plished by drawing through A a line parallel to the X-axis and
through B a line parallel to the Y-axis. These two lines inter-
sect in the required point C. For convenience we will denote the
vector AB by a, the vector AC by* a_, and CB by a,. The vector
a, is called the component of a in the direction
of the X-axis and the vector a is said to be
resolved along the line 0OX; a, is the com- a
ponent of a in the direction of the Y-axis, and | 4 A:;
a is said to be resolved along the line 0Y. It -
is evident that a, is the projection of a on the ol X
X-axis and @, is the projection of a on the Y-axis.

A vector may be resolved along any directed line by projecting
the vector on that line ; that is, the component of a vector along

Y,

* In using the components of a vector a, we need to give only the numerical values.
The directions are indicated by the subscripts.




KINEMATICS OF A POINT. CURVILINEAR MOTION 59

any directed line equals its magnitude multiplied by the cosine of
the angle its direction makes with the given line.
In solving problems involving vectors it
is usually more convenient to deal with the
components. If the axial components of a
vector a are a, and a,, it is evident from the " r'
figure that the magnitude® of a is given by 2 N ¥
a= Va2 +a? and the direction of a is the | _
same as the direction of a line from the origin to the point
(8, a,). If we denote the angle which the vector a makes with
the X-axis by (a, @), we have

a
a

cos (x, @) = %’; sin (@, @) =

Hence we have the formulas:

e =+Vaitah
a,=a cos (x, a),
a, = a sin (x, @) = a cos (¥, a).

@

In particular the components of the vector which represents
the position of a point P in a plane are the rectangular coérdi-
nates of that point.

When the axial components a,, a, of a vector a are-known, its

v] component in the direction of any line I is

: readily found. Denote the angle which !

. makes with the X-axis by («, 7). The projec-

— tion a, of a upon ! is equal to the sum of the

¢ projections of @, and a, upon !. The projec-

o/ X tion of a, upon ! is a, cos («, ¥) and the pro-

/ jection of a, upon I is a, sin («,2). There-
fore the component of a in the direction ! is

an a,= a, cos (x,?) + a, sin (x, 1).

Components of the resultant of any number of plane vectors.
Let a, b, ¢ --- be given vectors with components a,, ay,; by by
¢» ¢ --- respectively. Let R (components R, R,) be the
resultant of a, b, ¢ --.. By the definition of a vector sum, we
regard a, b, ¢ --- as the segments of a broken line, while R is the

®The letter a represents the magnitade of the vector a.
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closing line. By the second theorem of projection,* the sum of
the projections of &, b, ¢ --- upon any line is equal to the pro-
jection of R upon that line. Therefore,

1D B.,=a,+b,+c,+ -
RB,=a,+b,+c,+ .

33. Vectors in space. The results for plane vectors may be
extended at once to vectors in space. Any vector in space may
be resolved along three mutually perpendicular lines by projecting
the vector upon each of the lines.

If the three mutually perpendicular lines are the X-, ¥-, and
Z-axes, the components of the vector a are denoted by a., a,, a,.
The magnitude of a is a=Va,2+ a2+ a2 and its direction is
the same as the direction of a line from the origin to the point
(a» a,, a,). The direction cosines of the vector are

xr al

a
cos(w,a)=%; cos (y,a)=—a!; cos(z.a)=z-

For space we have the formulas :

a = + .\/axz + ayz + agz,
a,= a cos (x, a),

a, = a cos (y, a),
a,=a cos (2, a).

avy

Since the second theorem of projection holds also in space,t the
components of the resultant R of any number of vectors a, b, ¢ ---
are
B.=a,+b,+c +
QD) By=a,+b,+¢,+
R, =a,+b,+c,+ .

When the axial components a., a,, a,
of a vector a in space are known, its com-
ponent in the direction of any line ! may
be found. Let the direction angles of I
be (=, 1), (¥, ¥), (2 1). The projection
a, of a upon ! is equal to the sum of the
projections of a,, a,, and a, upon 1.

The projection of a, on ! is a, cos (x, ¥).

® Analytic Geometry, p. 47. t Analytic Geometry, p. 328.
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The projection of a, on ! is a, cos (v, ?).
The projection of a, on I is a, cos (2, 7).
Therefore,
(VD &,=a,cos (x, 1)+ a, cos (y, 1) + a, cos (2 1).

ILLUSTRATIVE EXAMPLES

1. Find the resultant of the three plane vectors a, b, ¢ whose components are

@3, —2), (2, 6), (— 7, — 1), respectively. ¥
Solution.

R, =8+4+2-T7T=-2,

By (1ID), {R,=_ 24+6-1=3.

By (I), R=VIs, , B)=——2_,

{() cos (x, B) 8\/1_3
in (@, B) = —5_.
sin (@, R) 75

In the figure, this result is checked by graphical construction of the resultant.

2. Three vectors a, b, ¢ in space have magnitudes equal to 12, 8, and 6,
respectively, and their direction angles are as follows:
(a) (@, @)=}r, (@)=}~ (z.0)=}r;
(b’) @ d)=¢r, (¥,0)=%x (2,0)=4r;
@) @)=t~ (y.o)=3ir, (2, 0)=%r

Determine the resultant.

Solution. Finding the axial components by (IV), we have
a,=—0V2, a,= 0, a,=6V2,
be=—4V8, b,=~4, b,=0,

&= 8V2 ¢,=—4,c,=—8.

Hence, applying (V), the resultant has the components

{R, =—8v2—4V3,
B, =-8,
R,=6Vv2-3,

3. Given in the XY-plane a vector a whose axial components are (— 2, 1).
Find its component along the directed line from the origin to the point (2, 1).

¥ Solution. In the figure, I represents the given

line, OA the given vector, OA’ the projection of
OAdonl.

By geometry, cos (, §)=—2-; sin(e, §)= L.

vb vb

By (II),
3 3

2 1
a=—2" 41— =—2 =_2+G,
v6 Vb6 Vb 6
The negative sign indicates that ¢; has the negative direction on 1.
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PROBLEMS

1. Determine in direction and magnitude the resultant of each of the following
groups of vectors in a plane, given by their axial components. Verify the result in
each case by a graphical construction.

(a) (21 0), (_ 21 "'6)1 (5’ 3)'

) (—1,8), 2 —1), (82).

(¢) (0, 1), (5,6), (-2, —8), (-8, —9).
(@) (9, 0), (19, 8), (8,2), (1, 4), (2 3).
(c) (07 —9)a ("‘ 1, "'6)1 (2‘ 5)’ (_ 11 "8)'

2. In the following examples the magnitude and angle made with OX of cer-
tain vectors are given. Determine the resultant in each case.

(@) 6,34r; 8§ Ans. Components are [(§ — 4V3), (§V3 +4)].
® 2,ir;93r Ans. (—§V8, — ).
. -3 3 _
(©) 8 47; L Ans. ( o 1).
(@) 4,47;10, ¢, Ans. (—5V3,1).
. 4 95 40
(e) 4, }7; 9,3 Ans. (\/§+2\/§, i 2),

8. In problem 2 find the component of the first vector along the directed line
determined by the second.

A (@ 35 0) -1 @ —%; @ —2; (&) VE(V3+1).

4. Given the axial components of the following vectors in space. Find the
resultant of each group :

@) (1, 1,5), (2 —1,86). (¢) (0, 6, 5), (1,9, —8).
®» @,0,8), (-1, —1,0). @ (8, —4,9), (6,2, 3).
(6) (_ 1! 21 8), (41 61 _'2)1 (91 101 ll)'
5. The magnitude and direction angles of certain vectors in space are as follows.
Determine the resultant in direction and magnitude.
(@) 10, 4wy dw §r; 6, 4w, im
Ans. Components are g, %, 5(5_ - \/ﬁ)]
‘ 2
(ORBLELEISENL T ELS
Ans. Components are [(8V2 + 2Vv3), —8, —5].

6. Determine the component of each of the pair of vectors in problem 6 (a),
(b), along the other.

7. A point has uniform motion along OX with a velocity of 10 ft. per second.
Find the component of the velocity along the directed line from (0, 0) to (3, 4).
Ans. 6 ft. per second.
8. Find the resultant of the following velocities, the capital letters indicating
points of the compass as usual, and the numbers the magnitude :
15 N., 20 E., 20vV2 N.W., 85 W, Ans. 85VZN.W,
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9. Find the resultant of :
(a) accelerations 5, 8, 10 parallel to the sides of an equilateral triangle taken

in order. Ans. (Taking first component along X-axis)(— 4, — V3).
(b) velocities 2, 5, 6, 3 parallel to the sides of a square taken in order.
Ans. (—14,2).

10. A point undergoes three displacements of 1, 2, and 8 units, respectively, in
directions parallel to the sides of an equilateral triangle taken in order. What is
the resulting displacement ?

Ans. V3 in a direction perpendicular to the second side.

11. A ship is carried by the wind 8 mi. due north, by the current 4 mi. due
west, and by her screw 20 mi. southeast. What is her actual displacement ?

12. A mall bag is thrown from a train with speed of 20 ft. per second perpen-
dicular to the track. If the speed of the train is 40 mi. per hour, what is the
direction and speed of the bag relative to the earth ?

13. A particle is kept at rest by forces of 6, 8, 11 units. Find the angle be-
tween the forces 6 and 8. Ans.. 77° 2V 52",

14. A boat is carried southwest by the current with a speed of 6 mi. per
hour and 30° south of east by the wind at the rate of 12 mi. per hour. What must
be the direction and magnitude of the speed due to her screw if she remaius at rest ?

. Three posts are placed in the ground so as to form an equilateral triangle,
and an elastric string is stretched around them, the tension of which is 6 Ib.
Find the pressure on each post. Ans. 8v8.

16. ABCD is a square, and the middle point of BC is E. Find the resultant
of three velocities represented by AB, AE, and AC.

17. The angle between two unknown forces is 62°, and their resultant divides
this angle into 40° and 22°. Find the ratio of the component forces.

18. Three forces act at a point and include angles of 90° and 45°. 'The first two
forces are each equal to 2 units and the resultant of them all is V10 units. Find the
third force. Ans. V2 units.

19. If three forces of 99, 100, and 101 units, respectively, act on a point at angles
of 120°, find the magnitude of their resultant and its inclination to the second force.

Ans. V8, 90°.

20. A weight of 40 1b. is suspended by two strings, inclined to the vertical
at angles of 30° and 45° respectively. Find the tension in each string.

Ans. 20(V6 —Vv2), 40(V3 —1).

21. Given the vectors a(3, — 2), b(5, 0), c(— 10, 6), d4(7, 7). Construct the
figures and find the resultants of the following:

(a) a+2b—3c;

(b) 2a—b+c+24;
(c) Sa+4c—-4d

(d) 4b—2c +54;

(e) 10a+6b+4c;
(f)2a+4+3b+c—4;
(9) 2a—8b—-2c-24d.
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34. Displacement in a plane. Path. Suppose a point moves in
a plane. Then its position vector changes as the time changes.
If the law of the motion is known, the position vector p is a
known function of the time, and its com-
ponents (p.=z, p, = y) are known functions
of the time ; that is,

VID) z=4¢(), v =¥ ().

Equations (VII) are called the equations
of motion. By assuming values t,, &, ¢, etc.,
for the time we may compute the corre-
sponding position vectors p;, P, g etc. The locus of the extremities
of the position vectors is the path of the moving point P. Since the
components of the position vector are the ordinary rectangular
coordinates, the equations (VII) may be regarded as the parametric
equations® of the path. The rectangular equation of the path
may be obtained by eliminating ¢ from the two equations (VII).

If p, is the position vector at the instant ¢, and if p, is the
position vector at the instant &, the total displacement during the
interval of time from ¢, to ¢, is represented by the vector d = P, P,.
This displacement is evidently equal to the difference of the vec-
tors p, and p; (Art. 80); that is,

d=p,—p;.
The position of the point at the instant ¢=0 is called the initial
position. It is represented by the position vector p, whose com-
ponents are z, = ¢ (0), y, = ¥ (0). The length s of the arc de-

scribed in the interval of time from 0 to ¢ is a function of ¢. The
expression for s is given by (66, Chap. XIV)

. J[(;Lf)% (gtl)’]'dt = f T OP+ W OPe,

d —
and = VIO WO

The sign of the radical is always taken as positive. The deriva-

tive % is the time-rate of change of s and is called the speed.

® Calculus, p. 93.
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35. Velocity in the plane. Velocity curve. Suppose a point P
moves along a path AB in the X Y-plane and that the equations

of its motion are z=¢(t), y =¥ ().

Suppose that at the instant ¢ = ¢, the point is at the position P,
represented by the position vector p,, and at the instant ¢ =1¢, it
is at the position P, represented by the po- B,
sition vector p,. During the interval of time Y
t;—t, the displacement is represented by the

vector d=p;— p,. B
The quotient Ps— Py
t,—t
is called the average velocity during the in- X

terval of time t;—t,. The average velocity is a vector, since it
is the quotient of a vector and a scalar. It has the same direc-
tion as the displacement vector d = p, — p,, and its magnitude is
equal to the magnitude of d divided by ¢, —¢,.

Let us now consider a fixed instant ¢=¢,, the corresponding
position vector being p;, and denote an interval of time immedi-
ately following ¢, by At, and the displacement during the interval
At by Ap. The average velocity during the interval of time At

. Ap
therefore —=-
is therefore =

To fix the ideas, let us consider some particular values for At,
the unit of time being 1 second.

(1) Let At=1; the displacement
vector Ap= P, P, (see figure), and the
average velocity during the interval of
one second immediately following the

instant t=1¢, is 211—11* The vector rep-

resenting the average velocity is there-
fore equal to the displacement vector,
that is, equal to the chord P P,.
(2) Let At=1}; the displacement vector Ap = P P,, and the
average velocity during the interval of one half second immedi-
ately following the instant ¢=¢, is

PP
HH=2 PPy = PP/,
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The vector representing the average velocity has the direction
of the chord and its magnitude is equal to twice the length of the
chord.

(3) Let At=1}; the displacement vector Ap = P, P,, and the
average velocity during the interval of one fourth of a second
immediately following the instant t =¢, is

1—’1*5: —1PP,=PpP,.
The vector representing the average velocity has the direction
of the chord P,P, and its magnitude is equal to four times the
length of the chord.

(4) Let At approach zero as a limit. The vector which repre-

sents the average velocity AA—tp has the same direction as the chord,

and hence when At approaches zero its direction approaches the
direction of the tangent to the curve. Multiplying ﬁf by%’t3 (As

represents the increment of arc along the curve in the time At),
we may write:
. . A As _As A
t =02p  as_4as Aap
Magnitude of average velocity At As—At e
As At approaches zero as a limit, As also approaches zero as a
.. Ap _ chord .. o, As
limit, and A ™ e approaches 1 as a limit, while Az °P

proaches % a8 a limit. Therefore the magnitude of the average

ds -
velocity approaches = a8 8 limit.

We now make the definition : The velocity of the moving point at
the instant t = t, 18 equal to the limit of the average velocity as At
approaches zero. The magnitude® of the velocity is therefore

_ds _ dr\? iz)’
mat (dt) +(dt ’
and its direction is the direction of the tangent to the path. The
cosine and sine of the inclination of the tangent are respectively:t
dz dy
ds’ ds
® The magnitude of the velocity is the speed. The velocity is a vector quantity and

possesses magnitude and direction.
t Calculaus, p. 142.
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Therefore, applying (I), we have for the axial components of
the velocity :

_ds dx_dx_
= ds - a ¥
(VIII) . ay_a
v =02 Jl YP'(e).

From.(VIII) we see that the component of the velocity of the mov-
ing point P in the direction of the X-axis is obtained by differentiating
the abscissa of P with respect to the time, and the component of the
velocity in the direction of the Y-axis is obtained by differentiating
the ordinate of P with respect to the time. In other words, v, is
the velocity of the projection of the moving point on the X-axis,
and v, is the velocity of the projection of the moving point on the
Y-axis. Hence the

THEOREM. The azial components of the velocity in curvi-
linear motion are equal to the velocities of the axial components
of the motion.

In general the velocity is different at different points of the
path. At the point P, of the curve the velocity will be repre-
sented by a vector v;; at the point P, by a vector v, etc. Let a
new system of rectangular axes be chosen, 0, X, ¥, and from the
origin O lay off the vectors v, v,, etc.

The locus of the extremities of the velocity vectors in the X Y-
plane is a curve which is called the velocity curve of the motion
defined by (VII). The position vector of any point P of the velocity
curve is equal to the velocity vector of the corresponding point
P of the path. The rectangular coérdinates of P(Z, ¥) are equal
respectively to v, and v,.
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ILLusTRATIVE ExampLe. Construct the path and the velocity curve for the
plane motion defined by the equations

t z y v, oy
0 0 1 1 0

: 4 : 4

n Y 0 1 -2
r r -1 1 0

2 2

3r | 87 | o 1 2

4 4

x L3 1 1 0

(¢)) z=¢ y=cost.
Solution. Eliminating ¢, the equation
of the path is found to be y = cos 2 2.

Differentiating (1), the components of
velocity are

@) v.=1, v,=—2sin2¢.

From equations (2), it is seen that the
velocity curve consists of a portion of the
straight line x = 1. Since the sine cannot
be numerically greater than 1, we have
no points on the velocity curve for which
is numerically greater than 2.

The cobrdinates of the moving point P and the components of velocity for oer-

tain values of ¢ are shown in the table.

PROBLEMS

1. Construct the path and the velocity curve for the plane motions defined by

the following equations :
(a) x=cost, y=sint;
(b) x=acost, y=>bsint;
(¢) x=2sint, y=cos2¢;
(d) x=cost, y=2s8in}¢;
(e) x=acost, y=acos2t;
(f)x=asin2t, y=asint;

(k) x =acos®t, y=">bsind¢;
() z=6t—1¢, y=38t¢;
(m)z=at, y=>bt + c;
(n) a=t, y=1+18;

() z=1-¢, y=12¢%;
(p)z=at?, y=a(l —£)%;

(g) x=a(t—sint), y=a(1—cost);
(h) z=a(t+sint),y=a(1—cost);
(i) z=a(t—sint),y="0(1—cost);
(§) z=acos?t, y =asind¢;

(@) x=at, y="bsint;
(r) x=a(l—cost), y=asint;
(8) z=a(l—cost), y=bsint.

‘2. A point describes any curved path with constant speed. What is the form

of the velocity curve ?
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3. Two points are describing free paths in one plane such that each path is the
velocity curve of the other. If the moving points be always at corresponding
positions, prove that the paths are conic sections.

36. Acceleration in a plane. In plane motion velocity may be
defined as the time-rate of change of the position vector, and the
acceleration as the time-rate of change of the velocity vector.

Since the velocity is a vector quantity, the acceleration is also
a vector quantity. Let v, be the velocity
vector at the instamt ¢t =1¢;; and v, + Av
the velocity vector at ¢=1¢, + At. The
change in velocity during the interval of
time At is represented by the vector Av and
the average acceleration during the interval

At is the quotient -ﬁ—:. Felocity Gurwe

The average acceleration is a vector quantity, since it is the
quotient of a vector and a scalar. The acceleration at any instant
(t =t,) is defined as the limit of the average acceleration AK: as At
approaches zero. This corresponds to the definition of velocity
given in Art. 85. Hence the acceleration can be obtained from
the velocity curve in the same manner as the velocity is obtained
from the path curve. Denoting the acceleration by f, it follows
that its direction is the direction of the tangent to the velocity
curve at the point corresponding to ¢t =¢;. The components of
the acceleration in the directions of the codrdinate axes are given
by formulas similar to (VIII). Thatis,if (Z, ) are the coéirdinates

of the point P on the velocity curve, then f: = y t’ Sfo=
and, since Z =v,, ¥ =v,, we have

- ed(E)-Teve

ax) .
dy '

fv= dt dt(dt) =y

The axial components of the vector acceleration are therefore

obtained from the equations of motion by differentiating twice.

Furthermore, a statement similar to the theorem of Art. 35 may be

made:
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THEOREM. The azial components of the vector acceleration in
curvilinear motion are equal to the accelerations of the axial compo-
nents of the motion.

The magnitude of the acceleration is obtained from its compo-

nents by applying (I),
f = +VFIRTE=\(Ga) + () = VI Or I VOT

37. Motion in space. The discussion of Arts. 34-36 is ex-
tended easily to the motion of a point in space. The difference
amounts to the consideration of the additional coordinate z. Thus
the equations of any motion in space will have the form

X) z=¢), ¥v=Y@®), z=x®)
in which the independent variable represents the time. By elimi-
nation of ¢ from the two pairs of equations (X)), the path will be
determined in rectangular codrdinates as the intersection of two
cylinders.
The velocity is a vector determined as in Art. 35, and if the
axial components are v,, v,, v,, then in agreement with (VIII),

ds’ d a ds
XD v=08 vo=37 o= . =32

Finally, the vector acceleration is defined as in Art. 86, and if
S Sy J, are its axial components, then

The equations of the path being given, the axial components
of velocity and acceleration are obtained by differentiation, and
from these components v and f are determined in magnitude and
direction by (IV).

38. Discussion of any motion. Given the equations of any
motion, the determination of its characteristics involves the fol-
lowing:

1. Notice the nature of the component motions and draw any
conclusions as to the general nature of the motion (periodic, etc. ).

2. Plot the path either by assuming values of ¢ and computing
z, y (and 2), or by eliminating ¢ and plotting from the rectangular
equation (or equations). Find the initial position.
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8. Differentiate and find the axial components of the velocity
and acceleration. Determine v and f.

4. Draw the velocity curve and discuss the variation of v with
the time.

5. Discuss the variation of f with the time, both in magnitude
and direction. -

ILLUSTRATIVE EXAMPLES

1. Discuss the motion whose equations are
(1) =28, y=2¢t—}¢8.
Solution. Following out the discussion:
1. The motion i8 not periodic.
2. The path is a parabola. For,
from (1), t=§2,and ... y =2 — gy 28, or 22 — 12z 4 12y = 0, which is a parabola.
The initial position is the origin.

o~
1]
-

DO ~O

L)
1
N,
//4
[}
5
@D bt
)
goxm

8. Differentiating (1), we obtain,

. "'-d-?-: =£z= —-2
@ ==k = =2 3t
Lo =Voitoi=VB—§t+ 30
a% _ _y_ 2
® f=%=0 =01

L=Vt fAi= §

4. The velocity curve is the straight line v, = 2. The initial velocity has the
components (2, 2). Hence at 0, the point is moving in a direction making an angle
of 45° with OX. The vertical 7]

component diminishes from 2

when ¢ =0, to zero when ¢ =3, ¢ Oa % v
and thereafter increases numeri- 0 2 9 av2
cally but is negative. Hence 1 2 13 |#vie
the speed diminishes from its Py 2 0 2
initial value 9o =2V2 to a mini- | ¢ 2 |—2 |2v3
mum value 2 when ¢t =38, and ete. | ete. | ete. | ete.
thereafter constantly increases.

When ¢ =38, the highest point
(6, 3) is reached ; v, = 0, and hence the tangent to the path is parallel to the X-axis.
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5. From (3) it appears that the acceleration is constant and has a downward
direction. :

2. Discuss the motion whose equations are

(¢Y) z = a cos nt, y = a sin nt.

Solution. 1. Both axial components are periodic with the same period, namely

Z"!-— Hence the moving point will return to any position in its path after an interval

of time equal to 2_:. and the motion is periodic.

2. Eliminating ¢ by squaring and adding, the path is found to be the circle
24+ =ad

The initial position is (a, 0).

3. Differentiating (1),

(2)  vx= — ansin nt, v, = an cos L.
S0 = Vot + = an.
(8) fe= —anlcosnt, f, = — antsinnt.

L I= VR =am =2

4. The velocity curve is a circle of radius an. Hence the speed is consiant.

Also when ¢ = 0 the components of the velocity

‘are (0, an). Hence the point describes the circle
in a counter-clockwise direction.

* 5. From (8) the magnitude of the accelera-
tion is constant. To determine its direction, we
observe by comparing (1) and (8) that

&) fo=—ni, fy=—ny.
If in the figure, P is (z, y), then the point
(— n%r, — n%), lies on the line OP produced
through O. Hence the vector acceleration at P
is directed towards the center.

The motion just described is called uniform circular motion. The axial com-
ponents (1) are both simple harmonic motions with the same amplitude g and the

Velocity

Y same period 27' (Compare
example 2, p. 49.)

3. Discuss the motion
whose equations are

Ot e X (1) z=at, y=bsint.
Solution. 1. The com-
= ponent of the motion in the

direction of the JY-axis is
periodic, while the motion in the direction of the X-axis is uniform.
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2. Eliminating ¢, the path is the sine curve
= z
y=>bsin o

whose period is 2 xa and maximum ordinate is . The initial position is (0, 0).
3. .Differentiating (1),

2) v:=a, vyy=becost ..v=Val{dZcos?t.
3) f-=0, fy=—>bsint=—y. ..f=Vy.

4, The velocity curve is the portion of the straight line Z = g between the
points § = b and y =— b.
From (2) the velocity at 0 has the components (a, b).

The speed varies between a (when c=’—;, 32—", etc.) and

Va® + b2 (when ¢t =0, x, etc.). That is, the speed is least
at the highest and lowest points, and greatest at the point
of intersection with OX., iard)

5. From (3) the acceleration equals the ordinate numerically but differs in
sign. Its direction is parallel to the axis of ¥.

The motion here discussed may be thus described. The point moves with con-
stant speed a parallel to O.X and simultaneously executes simple harmonic motion
parallel to OY.

4. Discuss the motion represented by
(¢))] ‘z=2sint, y=—cos2¢.
Solution. 1. Both components are periodic, and it is apparent that the
moving point will return to any position in its path after an interval of time equal
to2x.

t z y

0o |1

= | 2 | -1

x| 0 1

jr| -2 -1 =
2x | O 1 x
ete. | etc. | etc Cts)  Alo)  “Blaw)

2. Since cos2¢ =1 — 2sin? ¢, we find, on eliminating ¢,
y=1-2s8in2¢=1-—3}2z2
That is, the path is a portion of the parabola 3 + 2y — 2 = 0. The initial position
is 4 (0, 1),
8. Differentiating (1),

(2 . v; =2co8t, v,=—2sin2¢.
.. v =2 Vcos?t + sind 2¢.
3) Sfe=—28int=—z, f=—4co82t=—4y.

s f=VE2 416y
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4. The velocity curve, plotted from the parametric equations, has the form of
the figure 8.

From (2), when ¢ =0, v,=2, v,=0. The point ini-
tially at A moves to the right to the extreme position

B (2, — 1), at which point (¢ ={ =) the velocity is zero. 0 9 0 2
It then returns through 4 to C'(—2, —1), at which jr| 0 o o
pdint v is again zero (¢ =§ x). The point is again at 4 «| -2 o 9
when ¢ =2 x, and the vibration is then repeated.
i | O 0 0
FVis) V&Y 2r) 2102
py ﬂ - etc. | etc. | etc. | ete.

L RN B A
0 [0 |—4]| 4
jr | —2| 4 | v20
. x| 0 | —4 4
Velacity tr| 2 | 4 | V20
- A 2x | O | —4]| 4
2 3
, A s-% etc. | etc. | etc. | ete.

5. From (8), the acceleration has the components (—z, —4y). At A the
acceleration is downwards; at B or C it is tangent to the path. For, differentiat-

ing the equation of the path in 2, we get %:-z, and hence the slope at B is
—2. But the slope of the vector whose components are (—2, 4) is -;4; ==2.
Therefore the acceleration at B is tangential. Similarly for C. In the figure
the vector acceleration is drawn to scale.

AA', BB, and CC' are the vectors representing the acceleration at the points
A, B, C, respectively. The unit of length for the acceleration vector is } the unit
on the X-axis.

The motion just discussed is therefore an os- 7
cillation with parabolic path, the period being 2 . / i
The components (1) are simple harmonic motions -
with different periods, namely, 2 r and x. Their >

{
resultant motion is that of a point executing simul- |
taneously simple harmonic motions parallel to ;

T T~ SR |

perpendicular axes, the ratio of the periods being 2. r MT, b
4 |
5. Discuss the motion in space defined by n 3
(1) =z=acost, y=asint, z=>bt. U ’;P'f -;“
/0 X

Solution. 1. The z- and y-components of the
motion are harmonic vibrations, and the z-compo-
nent is uniform motion.

2. The path is a helix on the cylinder z8 + y3 = g* (Calculus, p. 272). The
initial position is (a, 0, 0).
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3. From (1), we obtain, by differentiation,

@) vy =—asint, vy=acost, v,=>.
oo=Val4 bl
3) Sfa=—aco8t=—2z fy=—asint=-—y, f,=0.
s f=a

4. Whent =0, v; =0,v, =w, v, =Db. .
Hence (b>0) the point describes the helix with constant speed in the upward
direction.

5. The acceleration is constant in magnitude, is parallel to the X' ¥-plane, and
is directed towards the Z-axis, since the direction from (0, 0, 0) to (— z, — ¥, 0),
when drawn from (z, y, £), will pass through the axis 0Z.

By comparison with example 2, it is seen that (1) may be regarded as the
motion of a point having simultaneously uniform circular motion around 0Z and
constant speed along OZ. Such a motion is obviously that of any point on the
periphery of a screw which is forced inward at constant speed. For this reason
the motion deflned by (1) is called a screw motion.

PROBLEMS
1. Discuss each of the following motions:
(@) x=8¢t y=2—t¢; - () z=a(t—sint), y=a (1 —cost);
) z=1-8, y=6+¢; (m) z =acos?t, y = asin®z;
(¢) z=a+ bt y=c+adt; (n) z=a(t+s8int), y=a(l—cost);
(@) z=08, y=}¢; (0) z=a(t—sint), y=>b(1 —cost);
() z=1—1, y=0; (p) z=a(¢+sint), y=>b(1—cost);
) z=8¢ y=6t-122; (¢) z=asin%¢, y=>bcos®t;
(9) z=at, y=bt—} g8%; (r) z=at, y=a(l-1)3;
(A) z=alB+bt, y=ct;. (8) z=a(l —cost), y=asint;
@) z=t y=18; (t) x=a(l—cost), y=">sint;
() z=8, y=13; (u) z=cost, y=4sin}¢;
(k) z=ae¥, y=>be¥; (v) x=acost, y=acos2¢;

(w) z=asin2¢, y=asint.

2. Discuss each of the following motions, the components in each case being
simple harmonic motions :

(a) x=2sin¢, y =2cost; (¢) z=asint, y=>bsin (¢ +8);
(b) x=2s8int, y=8cost; (f) z=2sin{t, y=cos¢;

(¢) z=sint¢, y=cos2¢; (9) x=acost, y=>bcos2¢;

(@) z=asinkt, y=>bcoskt; (h) z=sin}t?, y=asint;

() z=acos (kt+B), y=">bsin(k+B);
() z=acos (kt+B), y=bcos(kt+ B).

8. Discuss each of the following motions in space :
(@) z=t y=t+1, e=8~¢;
) z=1-2¢, y=2t-56, z=t—06;
(c) z=at, y=0bt, 2=ct;
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@ z=at+a, y=bt+b, z2=ct+c;

(e) z=sint, y=t¢, z2=cost;

() x=0bt, y=asint, z=acost;

(g) x=acost, y=>t, z=asint;

(A) z=acost, y=4sine, 2= Acost + Bsin¢;
@) z=¢t, y=1-08, z=3¢82 3+ 4¢;

() z=08+8t+1, y=02—-2, 2=1-8¢;
(k) x=2co8t, y=38cost, z=t;

() z=sin¢, y=cos2¢, z=sint¢;

. 1 1
(m) x=sint, y=7§cosz, z= — co8t;

(n) z=acos(kt+B), y=>0sin (kt +B), z2=t;
(0) z=acos®t, y=>0t, z=asin®¢;
(p) z=a(t—sint), y=t, 2=a (1 —cost).

39. Motion in a prescribed path. The question may be raised:
What characteristics must any motion on an ellipse possess?
Certain points are readily settled. If the path is

@ B33 + a%y? = a%3,

either axial component of the motion (VII) may be chosen, and
the other is then determined. Thus, if we choose the 2z component
as the simple harmonic motion,
z = a cos kt,
then, from (1), by substitution, ’
a3 cos? kt + ady? = a%b3, or
y = bsin kt.
In general, on a prescribed path one axial component may be
chosen arbitrarily, and the other i3 then found by substitution and
solving. That is, we set z = ¢ (t), where ¢ (t) is assumed, substi-

tute in the given rectangular equation, and solve for y.
Further useful equations are the following :

From v, = ‘g, v, = :%, we obtain
dy
dy dt v
2 = =Y.
@ dz  dz v,
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When the path is given, % is found by differentiation, and (2)

gives a relation between the components of the velocity which
holds for each point of the path. For example, for the ellipse (1),
this relation is

b2

He kﬂ

Differentiating (2) with respect to z, we get

v, B _ , 9%
Ty_d(n) de__ aa
dz’_dt U dt v:s

@ .- % L:T_”Lf_r (using (1X)).

In this equation the value of the second derivative of y with re-
spect to z is found from the equation of the prescribed path.

From (2), it has been seen that one of the axial components of
the velocity may be chosen and the other is then determined.
Knowing v, and v,, we may obtain f, and f, by differentiation,
and then check the results by equation (3).

IrLusTRATIVE ExampLe. If the path is the equilateral hyperbola zy = ¢, and
v, = k (constant), find v, and f;.

Solution. From the equation of the path, g =— % .
Hence, from (2), '
® ——

From the equation of the path, we find y = ;
By substituting, (4) becomes

k
;) = — — 28,
® on=-1
Differentiating with respect to ¢,

2k 2k
6 o= — “Zrp, =="28,
® % c 2

From the equation of the path y = , we find ﬂ = F’ and substituting in (3)
from (6) and remembering that f, = 0, the results check



78 THEORETICAL MECHANICS

PROBLEMS

1. In the following problems the path is given. Find (1) £, it v, = 8; (2) J, if
vy = @

—- 28 5. 222
(a) 2y =as. Ans, —a;—x‘, e

= —F . 2y
®) y=a= Ans. a=loga’ a? (loga)?y

= B, _4dad
(¢c) y*=4ax Ans. 2a’

2 P
(@ a’+b’_1'
2 2
(e) ;-%:l.

(Nt +yt=at;
- y_ - ) (1_23:#.
(9) ==aarcvers  —(2ay — )% (Heredy (2all—y’)§)

Pay ;_E'..
ea-pt ¥
__Pay .y
(y’—a’)' a?

2. In the following problems the path and the component of velocity along
one axis are given; to find the component of acceleration along the other axis.

Ans.

) y=g(e=+e_5). Ans.

(a) z+y=1; vy, =cos kt. Ans. f,=ksin kt.
(b) Az +By+ C=0; v,=8—1. Ans. f,=%(1_2z).
©) y*=4az; v,=ct. Ans. f.=§°—a(c:2_+y).
(@) r*=4az; v,=sint. Ans. ﬁ:%’(y’cost—«ia’sin‘t).
8., 8 ' —_a[2ycos2t a®sin?2¢)]
(e) 22+ y2=a?; vy =gsin2¢. Ans. fo= 2{ z T g }
) B2+p=a; 0, =12 Ans, f,=—202_ a0
vy ¥
2 2
() ;+§—2=1; vy = nb cos nt.
2 2 e
® Z+6=1; 0, =at dns. fo=— S0 (Ly 00,
3
©) %-ba-_-l; vy = Cl3,

.
€) 2—2—I£+1 =0; v, =asec?t.

(k) zy = a?; v.=asecdt.
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3. In the following problems the path and one component of the motion are
given; to find the components of velocity and acceleration and to discuss the
motion.

(a) i=4az; y=ct.
() r=4ax; x=acost. .
(¢) 3+1;=ad; z=Dbcosnt; (b < a).
@) z2+43=a?; y=ct?

(9) zy=a?; y=atant.

(e) ‘%—g:l; z=ct.

i —0: £=
W a_a-§+1_o, z=atant.

4. A point describes the curve given with constant speed ; to determine the
components of velocity and acceleration.

(a) Az+By+ C=0. (e :_:_gﬂ.
) B+yr=ad ) 2y=a
() p=tax @ F+yt=dd.

@ 2P (h) y=alogsinz.
@ v (%) y=>blogcosz.

5. Given v, = kz, v,=ky. Show that the path is a straight line passing
through the origin, and find the components of acceleration.

8. Given v, = ky, v, = kx. Find f,, f;, and the equation of the path.

7. A wheel rolls on a horizontal plane so that its center has constant speed.

Compare the speed at any instant of a point on the circumference with the speed
of the center.

8. Find the axial components of the acceleration in problem 7, show that the
acceleration at any instant of a point on the circumference is constant in magnitude

(= %’ ) and is directed towards the center of the wheel.

9. A wheel rolls upon the inside of a second wheel whose diameter is twice its
diameter. If the center of the smaller wheel moves with constant speed, show that
& point upon its circumference will execute simple harmonic motion.

10. The pin of & crank moves in a groove in a vertical bar whose extremities
move in horizontal grooves. If the crank pin rotates with constant speed, show
that any point of the vertical bar will execute simple harmonic motion.

11. A point describes a curve with an acceleration parallel to OY. Show that
I= ¢:"L‘z , Where c is the constant speed parallel to OX.

18. A particle describes the cycloid z = a(@ — 8in6), y = a(1 — cos ). Show
that o3 = 2—:4’. If the acceleration is at right angles to the line joining the cusps,

show that it varies inversely as the square of the distance from this line, or also
directly as vt.
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L d L3
13. A point moves on the catenary y =3}a(e®+ ¢ °).
1
Show that v = e vy
If the acceleration is parallel to OY, show that it varies directly as the velocity.
14. What points on the rim of the wheel in problem 7 have the same speed as
the center ? Ans. Points of an arc of 60° described about the lowest point.

40. Tangential and normal accelerations. For plane motion
the components of the acceleration vector in the directions of the
coordinate axes are given by (IX). The components in the direc-
tions of the tangent and normal to the path are obtained by
applying (II).

We first adopt a convention as to the positive direction along
the tangent and normal. The positive direction along the tangent
PT shall agree with the direction of the velocity. The positive
direction along the normal PN shall agree with the direction
obtained by rotating P T counter-clockwise through a right angle.
Hence, by the definition,

¢)) (z, N)= ’Z' + (z, T).

If f, and f, are the tangential and
normal components of £, from (II),

(2 fi=f.cos(z, T)+f,sin(z, T).

() fa=rf.cos (z, N) + f, sin(z, N).
The second member of (2) is re-

duced as follows. Since by assumption (z, T') = (z, v), we have

DI X

cos (z, T') = cos (z, v) =%;

C))

sin (z, T') =sin (2, v) =1—3!.

Hence, by substitution in (2), using (IX), we get

_dv, v, dy, v, 1 dy, dv) dv
T=a T tE T ( @ T A ) a
Since ¥ = v.? + v,2, by differentiation,

doy .
a

.-...d-”__(v, d"‘+v,d” )

dv dbv.
032 —25, % 9
20 =2 TG

dt dt
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Similarly, to transform (8), we have, from (1) and (4),

cos (z, N) = — sin (z, T)=—!;’,

sin (z, N)=cos (z, T) =%¢.
Substituting in (8), we obtain
®) fo= el =0t

v
If R denotes the radius of curvature of the path (formula
64, Chapter XIV), we have, by (VIII) and (IX),

~ ad
R ——— .
vxfy - vyfr
Hence, we write (6) in the form
v

For reference later we give also another form for f,. From
(8), Art. 89, we have ’

ﬂ = v.r.f[ - v[lz.
da3

v,3

Hence, from (5),
AL
The results found give the

THEOREM. If the vector acceleration at any point of the path is
resolved along tangent and normal, its components are
=dv_d’s__ dv =
(XIID) fi=g=aw=%ds I &
where R i8 the radius of curvature.
Since f; and f, are at right angles, we have obviously

f=VfE+ft
Two important results follow from (XIII). 1. If the pathisa
straight line, %= 0, and ... f,=0. That is, in rectilinear motion
the vector acceleration is directed along the path. 2. If the speed

is constant, %= ¢, whence ‘;i;= 0 and .-. f;=0. Hence in curvi-
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linearmotion with constant speed the acceleration is directed along
the normal.

Furthermore, in any curvilinear motion (f,# 0), the accelera-
tion is directed towards the concave side of the path. To show this,
four cases must be considered. From formula (7), for f, it is

plain that f, is positive or negativé according as v, and%g have
like or unlike signs. By Calculus, p. 137, the path is concave up-

wards or downwards according as Lir’ is positive or negative. The

da?
four cases to be considered are :
1. The path is concave upwards and the point is moving

towards the right. Therefore, % and v, are positive; hence f, is

positive and the resultant of f; and f,, that is, f (fig. ) is di-
rected towards the con-
cave side of the curve.

2. The path is con-
cave upwards and the

) point is moving towards
the left.  Therefore,

P\ % is positive and v,
o is negative ; hence f, is

© ¥ @ negative. By deﬁnitio.n

(1), the normal PN is
directed downwards, hence f, is directed upwards and the re-
sultant f is directed towards the concave side of the curve
(fig. b).

Similar results follow for the two cases when the curve is
concave downwards, as in figures ¢ and d.

Since the direction of the tangent agrees with the direction of
the velocity, we have from the figures the criterion: The velocity
vector 18 rotating counter-clockwise when f, is positive, clockwise when
J 18 negative.

The significance of the algebraic sign of f, is easily determined.

Since f; = c%(g%)’ it is seen that when f, is positive the speed is

increasing; when negative, the speed is decreasing.
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When the equations of motion are given, we proceed as fol-
lows to find f; and f,:

1. Differentiate and find v,, v,, f,, f,.
2. Find v from v= Vv,2 + v 2
8. Differentiate this last result, giving f; =%’.

4. Find f, by (6), p. 81.
IrrusTRATIVE Exampre. Determine the normal and tangential accelerations

in the motion deflned by ]
z=acost, y=>bsint. WA
Solution. Eliminating ¢, the path is the ellipse ‘WA
b3x3 + a%y? = a?b. N
Following the directions given, we find W'
v,=—asin¢, vy,=bcost, fu=—acost, f,=—bsint.
Hence v = + Va?sin?¢ + 03 cos®. From these values we obtain
ﬂ=g= (a3 —0d2)8int-cost ,
d¢t 4+ Va¥ein?i + b3cos?t
o= O fy—Ofs__ ab .
v + Va¥sin?¢ + b3 cos? ¢

‘We note the following table of values. The point
¢ | 2 | ¥ | Jo | Ja| describes the ellipse counter-clockwise. The normal
’T s lolo|a acceleration is always positive, agreeing with the fact
i=| 0 b 0 b that the velocity vector rotates always counter-clock-
x |—al 0 0 a wise. Since f; >0 when the point lies in the first and
4| 0 | =] 0 b third quadrants, the speed increases from A to B and
2 o | o A’ to B'. Similarly, from B to 4’ and B’ to A the
x| a a
speed decreases.

PROBLEMS
Find f; and f, for problems 1 and 2, p. 75, and discuss the results.

41. Equations in polar codrdinates. In many cases it is more
advantageous to employ polar coérdinates in studying motion in
a plane. If (p, 6) are the polar codrdinates of a moving point P,
the equations of motion have the form

XIV) p=4(t), 0=y,
since obviously p and @ are now functions of ¢.
In rectangular coordinates the derivatives of z and y with

respect to the time were of fundamental importance. Similarly
in using polar coérdinates we shall expect their derivatives to
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appear. The time-rate of change of the radius vector p is called
the radial velocity of the point (p, #). The time-rate of change
of the vectorial angle @ is called the an-

¥ gular velocity o of the point (p, ).
2 That is,
) %% =radial velocity,
@ .
== angular velocity.

U We desire to obtain the components
of the velocity vector and of the acceleration vector when re-
solved along and perpendicular to the radius vector. We first adopt
a convention as to the positive directions along these lines.

The positive direction along the radius vector is defined as in
Analytic Geometry, p. 149. The positive direction perpendicu-
lar to the radius vector is the direction obtained by increasing the
vectorial angle # by a right angle.

Denoting the components of the velocity and acceleration
vectors along the radius vector by v, and f, and perpendicular to \
the radius vector by vs and f, respectively, we have, (apply-

ing (IT)),
v, =1v,c08 6 + v,8in b,
@ Vg = v,C08 (% + 0) + v, 8in (g + 0) =—v,8inf + v, cos b,

and
Jo=S:co80 + f,8in 6,
C)) {

.=f,cos(%+0)+f,sin (g+0)=—f,sin0+f,coso.

To transform the derivatives of the rectangular coordinates into
the derivatives of the polar codrdinates, we have the relation,

z=pcosb,
& {y=psin0.
By differentiating (4), we obtain

= cos0% _ psin 0%
v, cosedt psmﬁdt,

(5 h
—sin0% 9
v,_smﬂdt +pcos€dt.
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and
& dp db a2
=cos %P _ dp d9_ (9>_
© S =cos b7 2sin @ TR pcosod psmodz,
f=sin0—e+20080—3-d—0 psmO(dg)-i-pcosodze
v ae dt dt g

Substituting (6) and (6) in (2) and (8), respectively, we
obtain, after simplifying,

vp=%$’
a9
xvy | ET
d? a0\ dv,
r=g-o(G) -
a9 ,dp d0_14d
fo=po-+2°0. =2 (p ®),

,db a20 odp dé
since "—(P’ )_;El? dt) Pan ™" at @t

| Of course v=Vv3+vd [f=V[f2+ S asusual

IrLusTRATIVE ExamMpLE. A point describes a circle whose equation is given
in polar codrdinates, Discuss formulas (XV) for this case (compare Art. 88).

Solution. If the origin is on the circumference, the equation is

1 p=2acosd. v
Differentiating with respect to ¢,
@) %’:—2asiﬂ0 g—:,orvp=— 2as8in 0 w.
<o =10,8 4 042 = 4 a?sin? 0. w? 4 plu? (] _
0 2a X

=(4a%8in?0 + 4 a? cos? 0)w?.
Hence
(8) v*=4a%? orw= 2L and v, =—vsin 4.
a

Equations (3) express angular and radial velocity in terms of speed, and are
easily found directly from the figure. This verification is left to the student.

To find the component accelerations, differentiate (2) again. This gives
%_—2amow—2asin0%’

dw
=—po?— 2asin0d‘
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) .'.f,=—2pw’-2asin0%:

% dw
=—2pul4 L. 2
2y toa

=—2pw’+2:a(by (4), Art, 42).

Similarly,
id dw
=== =2 —
O Jo pd‘(p’fv) “Op
=2 wo, + p.
Substituting in f3=/,2+ fp? we find after reducing,
) ﬁ=v’(4w’+§)=4a’(4u‘+ ).

This equation expresses the total acceleration in terms of the angular velocity
and acceleration.

In particular, assume fy =0, that is, let the acceleration be directed towards
the origin. Then, from (5),

m %(p’w):O. .-.,;’«:c,andu:%.
Also, from (5),
2 wy,
R, +par=0. . a=—""C.

Then (6) becomes
ﬁ=4a2(4ac+4“’"’o’)= 16 a%u%? _ 64 atut

I I 3
L o_B8a%W__ 8a?
® -~ . .

the negative sign being used since the acceleration must be directed towards 0.

This result is due to Newton, and may be stated as follows: If a particle
describes a circle with an acceleration directed towards a point on the circumference,
the acceleration must be inversely proportional to the fifth power of the distance.

PROBLEMS

1. Plot the path,® find v,, vg, fp, fs, and discuss the motion defined by the
equation :
(@) p=2asin??, 0=0;

®) p=2at, #=arccost (0Kt<1);

(¢) p=acost, 0=asect;

(@) p=asint, @=sint; .
(e) p=tant, 0 =cott;

(f) p=atant, 0 =cot?¢;

@) p=e%, 0=¢;

) p=a(l-1), 6=arccost (0<t<1);

() p=asing, 0=1¢;

(j) p=acost, 0=}e¢.

® The path may be plotted from the parametric form as given, or the ordinary polar
equation may be obtained by eliminating ¢.
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2. A point describes the ellipse p = — P .
po eclipser 1—ecoséd
Let 6 be given in terms of E by the relations,

ging=Yl—¢€ sinE _cosE+e
= \ —CcosE+te
14 ecosE 1+8008E’
and X be given in terms of ¢ by
nt=E + e sin K.
Prove Jo= —?, fo=0,whema=%.

42. Rotation. When the path is a circle, the motion is called
rotation. If the radius is », the equations of motion are

A p=r O=y(.
The position of the point is completely de-
termined if @ is known. For this reason,
the equation p = 7 is unimportant and it
is customary to call the second equation,
€)) 0 =v(,
the equation of the rotation.
From (2), we obtain by differentiation,

® g—f = angular velocity = o ;
' P _ do .
@ 7 e e angular acceleration = a.

That is, the angular acceleration is the time-rate of change of
angular velocity. Angles being measured in radians, angular
velocity is measured in radians per second. For example, if
o=} and is constant, the radius OP
rotates through a right angle in each sec-
ond. In the same way angular accelera-
tion is measured in radians per second in
each second. For example, if ¢ =1 and
is constant, the radius OP rotates with
increasing angular velocity, the gain be-
ing one radian per second in each second.

The speed in rotation is readily found.
For if 6 — 6, is the angle turned through in the time ¢ and s the
length of the corresponding arc, we have

8=r(0—0,).
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Hence, by differentiation,
3) ds_ dé

—=17— Or ¥ = 7o.

dt dt

In rotation the speed equals the angular velocity times the radius.

Next, consider the tangential and normal acdelerations. These
are also readily expressible in terms of w and «. For by (XIII)
and (H),

dy _ do _
) A
foB
"R r )

The same are found from (XV) by noting that in rotation
fo=—Suto=Fe

THEOREM. If @ and « are respectively the angular velocity and
angular acceleration in rotation, the speed and acceleration are
determined from

(XVD v =10, fi =1, fo=rol

ILLusTRATIVE ExanpLe. A fly wheel is making 120 revolutions per minute
(R.P.M.). If the angular velocity diminishes at a constant rate, find the number
of revolutions if the wheel stops in one minute.

Solution. The motion of the wheel is determined by the motion of one of its
points. Let wp be the initial angular velocity.

Then, since * 120 R.P.M. = 2 R.P.S. = 4 r radians per second, we have wp = 4 r.

Since the angular acceleration is constant,

a= %“i’ =k, .. w =kt + ¢, where c is the constant of integration. But w = wg

when ¢ = 0.
(¢)) cow=Rkt+wyor w=kt+4r.
Since the wheel comes to rest in 60 sec., w = 0 when ¢ = 60,
0=00k+4x,andk=— .

(2) Cow=—Jewt+ 4w
Writing w = %, integrating and assuming 8 = 0 if ¢ = 0, we obtain from (2)
® 0= — Jyxt2 +4xt,

which gives the angle turned through in any time. If ¢ =60, ¢ =120 =, and hence

the number of revolutions is 2-L = 60.
L g

® In general, angular velocity = %—; . RP.M.
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PROBLEMS

1. In the following problems the equation of motion of a point describing a
circle is given. Discuss the motion.

(@) 6=at+0b;

b)) 6=at?+bt+c;
(¢) 6 =sint;

@ o6=68-—t;

0 =rsin™l.
(e) a't;n2

2. A fly wheel making 360 R.P.M. is subject to a constant retardation of 1
radian per second per second. How many revolutions does it make before stop-
ping ? What time is required ? Ans. 88 x revolutions ; 12 = sec.

3. A fly wheel starting from rest is subject to a constant angular acceleration
of } radian per second per second for two minutes. Find the angular velocity and
the number of revolutions made at the end of the first minute; at_the end of the
second minate. Ans. Y0 R Py, 450 oy, 1800 g p g, 1800 1y

L k g w

= rev.;
k4

4. A fly wheel starting from rest and subject to a constant angular acceleration
for 3 minutes makes 5000 revolutions. Find the acceleration.

. Ans. a = % rad. per second?.

5. A fly wheel making 500 R.P.M. and subject to a constant retardation comes
to rest after making 2000 revolutions. What time is required ? Ans. 8 min.



CHAPTER 1V
KINETICS OF A MATERIAL PARTICLE

" 43. Momentum. In the preceding chapters motion of a material
particle has been studied without reference to mass or force. The—
-Jatterare now to be taken into consideration. We begin with the
definition:
Momentum or quantity of motion is the product of mass and
velocity, or

(¢H) Momentum at any instant = mv.

From the definition it is plain that momentum is a vector quan-
tity, being the product of the vector velocity by the positive num-
ber m. The direction of the vector momentum is the same as that
of v, but its magnitude equals the product. of mass and speed.

44. Force. The science of Mechanics is founded upon laws
or axioms which sum up the results of experience in the ohserva-
tion of motion. A set of three Laws of Motion was proposed by
Sir Isaac Newton (1642-1727), the statement of which is general
enough for present purposes. Considering these laws as needed
in the development of our subject, we begin with the

FirsT Law oF MorioN. Every body persists in its state of
rest or of uniform motion in a straight line, except in so far as it
may be compelled by force to change that state.

Remembering that uniform motion in a straight line means
motion with constant vector velocity, it is plain that uniform motion
means constant vector momentum. The First Law is often ex-
pressed by saying that the dody has inertia. A body has no power
of itself to change its state of rest or motion, but continues to
move with constant momentum when not acted upon by an im-
pressed force. That is, by the First Law we conclude that no
Jorce i8 acting upon a body if the body 18 at rest or moving with con-
stant momentum.

If, however, the momentum is variable, then the existence of
forces acting upon the body is inferred. We thus come to the

90
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SecoND LLAw oF MotioN. Change in momentum is caused
by forces acting upon the body. Force and change in momen-

tum agree in direction, and the m_ggg_xﬂie_pj_the_mme at any

instant is proportional to the time-rate of change in momentum,

In this statement of the Second Law is contained the defini-
tion of force. For consider the motion of a material particle
of mass m. Its momentum at any instant equals mv. Since m
is constant, change in momentum means change in vector velocity,
and the direction of change in velocity we know agrees with the
direction of the acceleration. By the Second Law, therefore,
force and acceleration agree in direction. Furthermore, the
magnitude of the force at any instant is proportional to the time-
rate of change in momentum; that is,

(2)  Force at any instant = P (mv) km kmf,'

where k is a constant factor of proportionality. Hence the Second
Law leads to the result :

The force acting at any instant upon a material particle has the
direction of the vector acceleration and in magnitude i8 proportional
to the product of the mass and acceleration. Force is therefore the
cause of acceleration.

The value of the factor % in (2) depends upon the units
assumed. Evidently for analytical purposes it is convenient to
assume k=1. This is shown below to be equivalent to assuming
that force is measured in so-called scientific units. For theoretical
purposes, therefore, we may assume as the magnitude of force,

~
¢)) Force =m ‘;_;’ =mj,

In Applied Mechanics, however, it is found more convenient to
select & not equal to unity. (See Art. 45.)

Observation of falling bodies makes familiar the phenomenon
of changing momentum. The force in question is then called
the weight of the body, or also, the force of gravity. That is,
weight is the force of attraction exerted by the earth upon other
bodies. The acceleration caused by weight is nearly constant in

* In equation (2) the differentiation is made on the assumption that the mass is
constant. If the mass is variable, a special investigation is required. See Routh,
Dynamics of a Particle, p. 80.
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a small region near the earth’s surface and is denoted by g. This
acceleration is also called the intensity of gravity. The numerical
yalue of g varies from place to place and also depends upon the
units of length and time adopted. In the English and French
systems, respectively, as an average value,

g = 32.2 ft. per sec. in 1 sec. (English),

g =983 cm. per sec. in 1 sec. (French).

Dimensions. From the definition of force it follows that its
dimensions are mass times acceleration. The derived unit of
force is therefore expressed in terms of the fundamental units of
mass, distance, and time by the dimensional equation

Force = w.
time 2

45. Units of force. Scientific units. For theoretical purposes
it is convenient to define unit force as that force which will
produce unit acceleration in unit mass. éémtl n it is
apparent that in equation (2), Art. 44, t acto proJ:)rtmn-
ality, %, is unity. Hence, in scientific units,

¢)) Force = mass times acceleration.

In the English system, the unit of mass is the pound and
‘the scientific unit of force is the poundal Hence, one poundal
18 that force which will give to a mass of one pound an acceleration
of one foot per second in one second. In the French system, the
unit of mass is the gram and th%%mt of force is the dyne
Hence, one dyne i8 that force which will give to @ mass of one
gram an acceleration of one centimeter per second in one second.

Technical units. In engineering practice the English unit of
force is equal to the weight of unit mass and is called the pound.
Referring to (2), Art. 44, since the force in question is weight,
we must replace f by g, and thus obtain

F = kmyg.
By hypothesis, when m is unity, so also is F,
o 1=kgand ... k=1+g.
Substituting in (2), Art. 44, gives as the magnitude of force in
technical units, ]
(2) Force = mass times acceleration divided by g.
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Comparison of the two systems of wunits. Mass, time, and
length are measured by the same units in both systems. As just
explained, however, force is measured by different units. To
find the relation between the latter, we may apply (1) to the
case of weight, whence, in scientific English units,

® Weight = mg (poundals).

Since, by definition of the technical unit, the weight of a 1-1b.
mass equals 1 1b. of force, hence the equivalence,

@ One pound of force = g poundals.
The student will observe that in technical units weight and
mass are numerically equal. The difference is one of dimensions
only.
The following Table of Equivalents, together with equation
(4), will be found useful :

ENGLISH FRENCH
1 foot = 30.48 centimeters;
1 pound (mass) = 453.6 grams;
1 poundal = 13,825 dynes;

1 pound (force) = 4.45 (10)5 dynes.

46. Rectilinear motion. If the path of a material particle is
a straight line, the expressions for the acceleration are given by
(IIT), Chapter II. Hence, applying (I), and denoting the force*
by F, we have

F=m

Dividing by m, we have the force equation or the differential
equation of motion in a straight line.

r_ &z F_dv F_ pdv

an @ m=an °F ®) m=ar °F ©) =Y

Suppose the mass m is given and the force is known. It

is required to discuss the motion. For this purpose we must

determine z from equations (II) by integration. If Fis a function

of the time only, (a) should be used; if F is a function of the

* The discussion of the text assumes scientific units in all cases.
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velocity only, (b) should be used; and if F is a function of the
distance only, it is usually more convenient to use (¢). However,
in case of a linear function of v and z, that is, if #= Av 4+ Bz + C,
where A and B are constants and C is constant or involves ¢, use
(a) (see equations 71, 72, 73, T4, Chapter XIV). If Fis a con-
stant, either form may be used.

The force alone is not sufficient to determine the motion
completely. For example, let us consider the case of a particle
projected vertically in a vacuum. Obviously the motion will
depend upon the position (on the vertical line 0X) from which
the particle is started, and upon the velocity with which it is
projected. The initial position z, and the initial velocity v, are
called the initial conditions, and it will be shown that when known
they determine the motion completely. The only force acting
is the weight, whose magnitude is mg. The direction of the force
is downward, and if we choose the positive direction along 0X
downward, we have, from (II), (3),

F_mg_dv v
m m dt’
or
dv _
Frintd
Multiplying by d¢ and integrating,
¢)) v=gt+ec,

where ¢; is a constant of integration; and since v= %-f, we may
multiply by d¢ and integrate again, obtaining

2 z=4g+ et + ¢y
where ¢, is a second constant of integration.

To determine the constants of integration, we make use of
the initial conditions. Suppose the particle is started at the
point z, with the velocity of projection v,, Then when t=0,
z=1z), and v=1v, Hence, substituting in (1) and (2), we have

an Y% =

@H Zy=Cq.

Hence the equation of motion is
r=1}g8+ vt + z,.
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The discussion may be made according to the directions given in
Chapter II.

47. Resultant force in rectilinear motion. If a particle mov-
ing in a straight line be acted upon by two or more forces directed
along the line of motion, the resultant acceleration is the algebraic
sum of the accelerations due to the separate forces. Suppose the
particle is acted upon by n forces, ¥}, Fj, -+, F,. The acceleration

due to F| is f} =-§1, to Fy isf,=-,—1’;3, «y to F, is f, =%, and the

resultant acceleration, f, is given by

1¢)) f=f1.|.f2+...f'=1;_ﬂzﬂj'_‘”_Fn.
Hence, if F denotes the algebraic sum or resultant of the
collinear forces (¥ = F, + F3 + .- F,), we have, from (1),

@ F =nf.

That is, if a particle moving in a straight line be acted upon by any
number of forces directed along the line of motion, the product of the
mass and the acceleration is equal to the resultant force.

ILLUSTRATIVE EXAMPLES
1. A heavy body is projected in a vertical direction. Determine the equation
of motion if the resistance of the air is proportional to the speed.

Solution. We take the X-axis vertical with positive direction downwards.
There are two cases: (a) when the body is falling; (b) when it is rising.

(a) The weight, acting downwards, is positive and equal to mg. The resistance
of the air always opposes the motion, and hence, when the body is falling, this
force is negative. Since the velocity is positive, we have

Resistance =— umo,
where u i8 a factor of proportionality.
The resultant force is F = mg — umo.
(b) When the body is rising, the resistance of the air acts in the same direction
as the weight, and is, therefore, positive. Since the velocity is negative, we have
Resistance = — umo,

and the resultant force has the same form as in case (a).
Hence, in this problem, the force equation is the same when the body is falling
as when it is rising. .
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Since the force is a linear function of v, we use (II) (a),

or
dx dz
1 — —=g.
M e trg =9
The solution of the homogeneous equation (see Calculus, p. 440),
=0,
dt" ;e
is xT=c + cge—ms,

We see by inspection that a particular solution of (1) is z =;£; ¢, and hence the
general solution is
2) z= % t 4+ ¢1 + cee~mt,

The constants of integration are determined if the initial position, zy, and the
velocity of projection, vg, are known. Differentiating (2), we find the velocity,

©)) o=g—-me-u'.

If 2=z, v=1o when t=0, we find, from (2) and (8), s =’%—1°,
®
=% + -‘:f - ’%, and hence the equation of motion is

z=9¢ 24+ % 1+( ) em.
" " W

2. A box of mass 100 1b. is placed on an elevator which ascends with an acceler-
ation of 10 ft. per second per second. What pressure does the elevator exert upon
the box ?

Solution. Taking the positive direction upwards, and denoting the pressure of
the elevator on the box by P, we have for the resultant force,

F=P—mg =mf.
Substituting the values of m and f, we find
P =100(10 + 32) = 4200 poundals.

PROBLEMS

1. Find the equation of each of the following rectilinear motions under the
given conditions :
(@) F.=mt; z=1, v=0, whent=1.
Ans. z=3}8—3¢t+¢.
) F,=m(@-1); y=0, v=1, whent=0.
Ans. y=38 -3+t
©) F,_ '1, z2=0, v=0, when ¢t = 2.
Ans. z=(t—1)[log (¢t —-1)—-1].
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(d) Fy=mco8t; y=0, v=0, when ¢t =0.

Ans. y=1—cost.
() Fr=—mz; z=a, v=0, whenz:%’.

Ans. z=asint.

(f) Fp=—my; y=0, v=1, when ¢t = r.
Ans. y = —sin t.

(9) Fr=—mx; x=acosB, v= —asing, whent=0.
Ans. z=acos (¢ + B).

(A) F,=—mk3; y=acosp, v=—aksinp, whent =0.
. Ans. y=acos (kt + B).

(i) F:= —mn%; x=ansin», v =ancos», when ¢t =0.
(G) Fy,=my; y=0, v=1, whent =0.

Ans. y=1}(et +e).
(k) Fy=—2my—2mv; y=0,v=10, when¢=0.

Ans. y =10e-'8in¢.
() Fr=-2mx—6mv; z=a,v=0, whent=0.

Ans. z=§c‘“(4cos4t+33in4t).

(m) Fr=—2pumv—k¥mz; =0, v=2>0, when ¢t =0, (k> u).
b _
Ans. z=me utgin Vit — ut.
() Fr=—4mx+2mcost; x=0,v=0, when ¢t =0.
Ans. z =% (cost—cos2¢).

(0) F,=—my—msint; y=0,v=0, when ¢ =0.
Ans. y=4tcost— §sint.
(p) F:=—kmx+msinnt; =0, v=0, when ¢t =0.
-—" ¢
k(k? — n3)
(9) Fy=—Kk'my +mcosnt; y=0,v=0, when¢=0.

_ 1 .
Ans. z = mkt+ms|n nt.

(r) Fr=—mz+msint+8mcos2¢t; x=0,v=0, when¢t=0.

2. Discuss the following rectilinear motions, taking into account the initial
conditions.

(a¢) f=a+z, given v =c, 2 =0, when ¢ =0.
) sSf=z3; given v = vy, 2= 2, When ¢t =t
(c) [f=1v3; given v =4, 2 =0, when ¢t =0.
@ f=av; given v =0, z:Z, when ¢ =0.

© f=£_—;k_v’; given v =0, r =0, when ¢ =0.
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=8 a =1
(€] Fz—m(at’——) given o-c',z c‘,whent p
Answers :
(&) z=—log(1-0).
1 e — p-lt
=1 jogtke.
© =3k e~+e-~’
a—4c
o v_-(t'+cs) Lioget; 2= g,w+ z--(uogcz n+22C.

3. S8how that a particle projected with a velocity v, and acted upon by a
constant force mk will acquire a velocity equal to V2 kz+ v? in moving the
distance z.

4. A body is projected vertically upwards with a velocity V. Prove the
formulas v=V—gt, h= Vi — } gt?, where h is the height at any instant. What

v

is the greatest height ? Ans. h=Y".

5. A body of 25 1b. mass is acted upon by a constant force which in 10 sec.
gives it a velocity of 76 ft. per second. What is the ma.gnitude of the force in
poundals ?

8. A heavy body is projected in a vertical direction. Write the force
equation and find the equation of motion if the resistance of the air is proportional
to the square of the speed.

Ans. When the body is rising, F =mg + umv?; 2=l logsec( 4 ¢+ c1) + cs.

When the body is falling, F=mg — umv?; o =\l"_: t +‘1_‘1°g (1= e~Vrat+e,) + cs.

7. An elevator, starting from rest, has a downward acceleration of 16 ft. per
second per second for 1 sec., then moves uniformly for 2 sec., then has an
upward acceleration of 10§ ft. per second per second until it comes to rest.
(a) How far does it descend ? (b) A person whose weight is 150 1b. experiences
what pressure from the elevator during each of the three periods of its motion ?

Ans. (a) 62 ft. (d) 751b.; 1560 ib.; 200 1b.

8. Equal masses of m lb. each rest upon two platforms, one of which has
at a certain instant a velocity of a ft. per second upwards and the other a velocity
of b ft. per second downwards. Both platforms have an upward acceleration f.
Compare the pressures of the platforms on the bodies.

9. A bucket containing 112 lb. of coal is drawn up the shaft of a coal pit
and the pressure of the coal on the bottom of the bucket is equal to the weight of
126 Ib. Find the acceleration of the bucket. Ans. £.

8

10. While ascending vertically in a balloon with a velocity v, a man drops a
stone when A ft. above the ground. Find the time required for the stone to fall to
the ground. Ans. v+ Vol +2gh

: g
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11. A string which can just sustain a mass of 10 lb. against gravity is attached
to a mass of 2 lb. which rests upon a horizontal table. Supposing that friction
is gy the weight of the body, find the greatest acceleration that can be given to the
body by means of the string.

12. A particle moves in a straight line under a force directed towards the origin
and varying inversely as the third power of the distance. Prove v? =§ + vo?, if &2
is the absolute intensity. If the initial distance and velocity are respectively b and
l_k> , show that the equation of motion is 22 = 42 — 3 kt. Discuss the motion.

13. A particle is projected with a velocity v in a medium offering a resistance
proportional to the square of the velocity. Show that the equation of motion may

be written s =1 log (uvt + 1). Discuss the motion.
»

14. Find the equation of motion if the force is a periodic function of the time.
Hint. Assume®* F, = macos kt. Then F, varies from ma to — ma with the

peﬂodzf. Ans. z=—%coskt+vot+zo.

15. When is the motion in problem 14 periodic and what is the’ period ?
Ans. v=0, period = 2%

16. A particle describes a straight line under the action of two forces, one con-
stant and the other an attractive central force proportional to the distance. Show

that the force equation may be writ.ten% = — udy + f, where x and f are constants,
Find the equation of motion and discuss it.
Ans, y= ccos(ut + »)+ -é , where c and » are constants of integration.
I’

17. Show that the motion in problem 16 is central motion, the center being at
y=-— Lﬁmd attracting directly as the distance. (a) What is the period of the
W

motion ? (b) If y =a, v =0, when ¢ =0, find the amplitude. Ans. (a) 2T,
N

18. A spring balance is extended } in. by a mass of 11b. and the force of the
spring is proportional to the extension. The spring is then pulled downward and
released. Show that the force equation has the same form as in problem 16, namely

%: g(1—48y). What is the period of the vibration ?

Ans. 27— lll sec. nearly.

V48g

* A finite periodic function of the time must have the form A sin(bt+») or
A cos (bt + »), where 4, b, and » are constants.



100 THEORETICAL MECHANICS

19. A particle is acted upon by a center of force which attracts directly as the
distance and moves in a medium resisting directly as the velocity. Show that the
force equation may be written & +2 p‘l—z + k% = 0. Find the equation of motion
de? dt
if u>k.

Ans. z = Ae—ntcos (VA? — u?t + »), where A and » are constants of integration.

20. Write the force equation for a particle which is acted upon by an attractive

center of force proportional to the cube of the distance if the particle moves in a

medium offering a resistance proportional to the square of the speed.

21. A central force is attractive and varies as the nth power of the distance.
If the particle starts from rest at the distance a from the center, find the time of
arriving at the center when (1) n =1, (2) n=-38.

Ans. (1) X, (2) 33_., where u is the absolute intensity.
2vVu Vi

22. In example 1, p. 95, show that the velocity approaches 9 as ¢ increases

"
indefinitely. Show also that when the particle is projected downwards with this
limiting velocity, the velocity remains constant, and the motion is uniform.

48. Curvilinear motion. Axioms on force action. Concurrent
forces. Three things must be known of a force in order to com-
pletely determine it, namely, its magnitude, its direction, and its
point of application. Forces are therefore not vector quantities in
the sense in which a vector was defined in Chapter III, because the
line of action of a force cannot be moved without changing the
effect of the force. We are, however, familiar from experience
with certain properties of force action which at least suggest
vector properties. In fact, it is evident that if we confine ourselves
to forces acting simultaneously upon a material particle, since at any
instant such forces have the same point of application, magnitude
and direction are now alone significant. Such forces are said to
be concurrent. For these forces'vector resolution and composition
have meanings with which we are familiar. These results of ex-
perience we state in the form of axioms.

AxioMm 1. The acceleration produced by the simultaneous
action of any number of concurrent forces is equal to the accelera-
tion which would be produced by their vector resultant.

In other words, any number of concurrent forces may be re-
placed by a single force equal to their vector sum.

AxioM 2. If a force is resolved along any direction, the accel-
eration dueto this component may be found by resolving the original
acceleration along that direction.
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For example, given a force F which causes at a given instant
the vector acceleration f in the motion of a material particle of
mass m. Then, by (I),

@ F =mf.

If now we resolve ¥ and f along any directed line [, the corre-
sponding components being F, and f, respectively, then f;is the
acceleration caused by F,, and by (I) and Axiom 2, we shall have

@ 1= mfp

That is, the component of a force along any direction equals the mass
times the acceleration along that direction.

49. Curvilinear motion. Suppose a particle moves in a plane
and is acted upon by » forces, F,, F, -, F,. By the first
axiom on force action the n forces may be replaced by a single
resultant force ¥ obtained by the vector addition of the individual
forces F,, F,, ---, F,. By the second axiom on force action the
component of the resultant force F in the direction of the X-axis
is equal to the mass times the acceleration in the direction of the
X-axis. Similarly, the component of F in the direction of the ¥-
axis 18 equal to the mass times the acceleration in the direction of
the Y-axis. Hence we have the rectangular force equations for
plane motion:

Fr=m ‘3:—-:. Fy=m %:’f, _ or
11 F.=m ‘%‘. Fy=m ‘—idl’tﬂ, or
Fz=m”.x ((ll—vm_" F,=’.n‘vy %’

where
F, = sum of z-components of all forces acting,

F, = sum of y-components of all forces acting.

The equations of motion are obtained by integrating the force
equations.

Equations (IIT) are the force equations for motion in the X¥-
plane. For motion in space of three dimensions the force equa-
tions have the same form, the only difference being that the
additional cosrdinate 2 is introduced. See (XII), Art. 37.

The integration of equations (III) introduces four arbitrary
constants. Hence to determine the motion completely we must
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have four conditions. These conditions may be the two coérdi-
nates of the initial position (z,, y,) and the two components of the

v initial velocity (v.,v,).

g From the discussion of Art. 40, we know that

>

the resultant acceleration in any curvilinear motion
is directed towards the concave side of the path
(in special cases along the tangent). This fact
enables us to construct in almost all cases the
beginning of the path. For we may plot the
initial position (zy, y,) and draw the initial velocity (since v.q
and v, are given). Further we may calculate F, and F, for the
initial conditions and construct the initial force F,. The path
then starts in the direction of v, and 8 concave in the direction of F,.

B (Zo.%0)

ILLUSTRATIVE EXAMPLES

1. Find the equations of motion and the path if ¥, =0, F, =mg; when
t=0,z=a,y=0,0. =0, 9,=0.
Solution. The force equations are

b ¢

a ) m%:O, m%:mg.

Each equation may be integrated separately :
@ Tt Topta

A second integration gives 0
® z=ct+cs y=1g0+at+ce

Substituting the initial conditions in (2) and (8), we find
@) b=1¢,0=cs.
D) a= o;., 0=cq

The equations of motion are
z=b+a y=43gts
Eliminating ¢, the equation of the path Is found to be
_ z—a\2
v=% v( b )

The path is a parabola with its axis parallel to the Y-axis.

2. A particle of mass m is acted upon by two forces: (1) one in the direction
of the Y-axis and equal to mk; (2) one in a direction making a constant angle e
with the X-axis and equal tom#?. Whent=0,2=0,y =0, 9, =a, v, =b. Find
the equations of motion.
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Solution. The z-and y-components of the first force are zero and mk, respec-
tively. The z- and y-components of the second force are mt? cos a and mi? sin a,
respectively. Hence the force equations are

M) wfZ-mpcosa, m‘%:mﬂsina.g-mk.

as

Integrating once,
@ %:}zscosa+cl, gf:}t’dna+kt+cg.

Integrating a second time, o
®) {z=ﬁ#ma+clz+o.,

y=yytisin o + } k2 + cat + 4.

Substituting the initial conditions in (2) and (8), we find,
@ a=cy, b=cy
(C)] 0=cs3 0=cs

Hence the equations of motion are
z=ygticost + at, y = yyttsin @ + § ke + b¢.

PROBLEMS
1. Find the equations of motion and the path in each of the following :

() Fs=mk, Fy=0; whent=0,y=0,2=0,v,=a, v,=0.
Ans. x=3}ki® + at, y = bt. Parabola.

@) Fr=mx, F,=0; whent=0,2=0,y=0,v.=a,v,=0.
Ans. z =}a(et—et), y= Dbt

(¢) Fr=am, F,=bm; whent=0,z=0,y=0,v,=0, v, =c.
Ans. x=%aB, y=3b8+ct. Parabdola.

(@) Fr=mz, Fy=my; whent=0,2=0,y=0,v.=a,v,=b.
Ans. z=4a(ef —e ), y=40(et —e~*).

(¢) F:=0,F,=my; whent=0,2=0,y=a,v.=1,7,=0.
Ans. z=t, y=}a(et + et). Catenary.

(f) F.=mz, F,=my; whent=0,z=a,y=0,0,=0,v,=0.
Ans. x=4a(et +¢e*), y =4 b(et —e~*). Hyperdola.

(9) F:=0, F,=mv,; whent=0,2=0,y=1,v,=1,9,=1.
Ans. z=t, y=¢e. Curvey=e=

(h) Fop=—mvd F,=0; whent=0,2=0,y=0,v.=1,9,=1.
Ans. z=log (t+1),y=¢t Curvez=Ilog(1+y).

(i) F;=—msint, Fy=mn?; whent=0,2=0,y=0,v.=1,9p=1.
Ans. z=sin¢, y=log(i—l—t)-

) F,:;L‘, F,=0; whent=0,2=9,y=9,v:=3,0,=2.
% .

i
Ans. z=§2_‘siﬁL,y=2z+9. Curve 923 = g5
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(k) F, =0, F,=mvo; whent=0,2=0,y=1,v,=1,v,=0.

Ans. z=¢t,y= e% Catenary.

(1) Fr=ma, Fy=mb, F,=mc; when t=0,2=0,y=1, 2=2, v =0,
u=0,0v=1 Ans. z=3at, y=3b08+1,z=}etP +t +2
Parabola in plane ay = bz + a.
(m) F=0,F, =0, F,=0. Ans. Straight line.

(n) Fy =— mrx, F,= —my, F, =0.
Ans. Heliz if initial position is (a, 0, 0) and velocity (0, b, c).

2. Show that the path is necessarily a straight line or a parabola if the force
is constant.

3. A particle is acted upon by two forces: (1) one parallel to the X-axis and
equal to m(¢t — 1) ; (2).one in a direction making an angle of 80° with the X-axis
and equalto m sin¢. Whent¢ =0,z =0, y=ga, v: = b, vy = 0. Find theequations
of motion. .

4. A particle is acted upon by two forces : (1) one parallel to the X-axis and
equal to —mzx; (2) one in adirection making an angle of 135° with the X-axis and
equal to mk. When ¢=0,x2=a,y=0,9. =0, vy,=0. Find the equations of
motion.

5. Aparticle is acted upon by three forces: (1) one parallel to the Y-axis and
equal to — mk%; (2) one parallel to the X-axisand equal to m(¢2 —¢t); (3) one in
a direction making an angle of 210° withthe X-axis and equal to mk%. Whent =0,
z=0,y=0,v,=0, v,=0. Find the equations of motion.

6. A particle of mass 12 lb. is moving in a northeast direction with a
speed of 6 ft. per second. It is acted upon by two forces, one of 48 poundals
towards the north, the other of 72 poundals towards the east. Find its position after
the lapse of one second.

7. A particle of mass 10 1b. is moving towards the north with a speed of 20
ft. persecond. It is acted upon by three constant forces: (1) 10 poundals towards
the northeast, (2) 20 poundals towards the east, (3) 15 poundals towards the south.
Find its position and the components of its velocity after the lapse of 3 sec.

8. A particle of mass m free to move in the X Y-plane is subject to a force
whose axial components are F; = — 16 mz, Fy = —4 my. The initial conditions are
z=1,v,=0, y=0, v, =2, when¢=0. Find the equations of motion and the
equation of the path. Discuss the motion.

9. The axial components of the force causing a plane curvilinear motion are

= —mz, Fy= —4 my. The initial conditions are =0,y =1,v:=1, 9,=0,
when ¢ = 0. Derive the equations of motion, discuss them, and draw the path.

10. A particle of mass m moves in the X ¥Y-plane under the action of a force
whose axial components are F, = — mx, Fy = — my. The initial conditions are
z=2a, y=0, v =0, v, = a, when ¢ =0. Derive the equations of motion. Dis-
cuss the motion.

11. Discuss the motion of the particle in problem 10 if the initial conditions are
z2=0,v,=a,¥y=a,v,=0, when ¢ = 0.




KINETICS OF A MATERIAL PARTICLE 105

18. A particle of unit mass moves in the X' Y-plane under the action of a force
which is directed always towards the origin, and its magnitude is proportional to the
distance of the particle from the origin. (a) Denoting the magnitude of the force
when the particle is at unit distance by 42, find and discuss the equations of motion
if the initial conditions are z=a, y=0, v.=0, v, = kb, when ¢t=0. (b) Prove
that for any initial conditions the path is an ellipse with center at the origin.
(¢) Under what initial conditions can the ellipse degenerate into a straight line ?

18. A particle of unit mass moves in the X Y-plane under the action of a repul-
sive force from the origin. The magnitude of the force is proportional to the distance
from the origin. (a) Find and discuss the equations of motion if the initial condi-
tions are x =@,y =0, v; =0, vy = b, when ¢t=0. (b) Prove that, for any initial
conditions, the path is an hyperbola with center at the origin. (c¢) Under what
initial conditions can the hyperbola degenerate into a straight line ?

50. Intrinsic force equations. In Art. 40, the tangential and
normal components of the acceleration were found. If, then, the
resultant force F, producing a motion in the plane, is resolved at
any instant along tangent and normal, the corresponding com-
ponents being F; and F,, we shall have

dv__ (_l‘!} - _mvﬁ.
(Iv) Fi=mf,=m g; =mv ., I',,_mf,__R..

These equations, being entirely independent of coérdinates, are
called the intrinsic force equations.

The component F), is directed always towards
the center of curvature. Motion along any plane
curve may therefore be said to be caused by the
simultaneous action of a tangential and a nor-
mal force. The change of motion involved, that
is the change in the vector velocity, may be
explained thus. The resultant tangential force
F, changes only the speed, that is the magnitude of the vector
velocity. The resultant normal force causes change in direction
of the velocity. If the speed is constant, the resultant tangential
force is zero. If the path is rectilinear, the resultant normal
force is zero.

F

51. Polar equations. In many problems the use of polar co-
ordinates is advantageous. If all forces causing a motion are re-
solved along and perpendicular to the radius vector drawn to any
point of the path, we shall have, by Art. 41,
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A
Fo =mfo= pdt(Pa)

When F, and F, are given, the equations (1) become simultaneous
differential equations of the second order, from the integration of
which p and 6 are to be determined as functions of ¢.

By introducing into (1) the radial velocity (v,, Zt and

@

the angular velocity (m = ‘;—3) about the origin, we obtain
Fo=m (ﬂg po?) ;

Fo= Fa (PPw).

ILLusTRATIVE ExaMpLE. A particle moves under the action of a force directed
always along the radius vector, the magnitude of the force being inversely pro-
portional to the cube of the distance. Discuss the motion.

Solution. Since the force is radial, we have
[¢)) F, -_-_’!}‘,u Fy=0.
Hence from the force equations (V),

do, _ — i =
p . @ o=l SGw=0
The second of these gives, by integration,

3) p*w = constant, or w =

&
"Lln

Substituting in the first, we get after reducing, since %=’

4 f£=_.’_‘ ——p—c?
4) 7 P',wherek »—c3

Multiplying both members by 2%”(1:, and integrating,

do\% k

6 —_— —3 —

(6) ( dt) a+ o
To obtain a simple solution,t assume as one initial condition, when p = a,

o,:‘/T’—‘. Then ¢; =0, and (5) becomes

* When p =1 and m =1, the force = u. Henoe « i8 the magnitude of the force upon
unit mass at unit distance. It is convenient to call x the absolute intensity of the force.
t For the general case see problem 5 below.
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0) o=k ora=tle.
Evidently ¥ must be poeitive, that is, since k =— pu —c3, u must be negative,

and from (2), the force is now an attraction.
The equation of the path is found directly from (8) and (6). For,

a8 _c 4 c dp
7 w="==, s di==dt=— =Ff.
™ a2 P VEP
Integrating, we have,
' 0=-"logp+c
\/k 2
or also —\:—— =logecep, Or p= be‘/zo,

by changing the form of the constant of int.egntlon. The path is therefore a
logarithmic spiral.

The assumed initial radial velocity (q, = -‘Z—-) may be interpreted thus, In-
tegrating (4) with the assumption that v,=0 when p =, we find ¢; =0, and
R X =;’;- If p =a, this gives v, = -‘g‘, the value assumed above. That is, the

initial radial velocity is assumed to be that acquired in moving in from infinity.
To find the resultant initial velocity, we have from (7) for initial angular ve-

=L, o —=ow=aw="C 23 =k _—_l
locity, W= g P =pe=aw=1_, and v¢? =, +o.’_ + 2’ since

k=—pu—c3 Hence vo=-" ;' £ the initial velocity.
The discussion leads to the

THEOREM. Given an attractive central force varying inversely as the cube of the
distance. Under such a force a particle will describe a logarithmic spiral {f pro-

Jected in any direction with a velocity equal to ia-‘_‘ , where a is the distance from the
center and u the absolute intensity of the force.

PROBLEMS

1. Show that a particle can move freely in a conic section with focus at the '
origin when acted upon by an attractive center of force varying as the inverse
square of the distance.

2. Show that a particle can move freely in a conic section with center at the
origin when acted upon by a center of force varying directly as the distance.

3. Show that a particle can move freely in a circle when acted upon by a con-
stant attractive central force.

4. Show that a particle can move treely in a circle under a center of force di-
rected towards a point on the circumference. Show that the law of the force is the
inverse fifth power of the distance.
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5. Find the general path under a central force varying inversely as the cube of
the distance.
Hint. Integrate equation (5) of the Illustrative Example, p. 108, without
specializing c;.
dns. k<0, 1=acos (?‘0+ ﬂ); k=0,p6 =a;
P
vk vk

k>0, 1=cle7‘+ cte'T'.
p

8. A particle is acted upon by two centers of force, one attractive and the
other repulsive, but of equal magnitude at any point. Show that the path is a
parabola.

7. A particle is acted upon by a central force proportional to the distance and
a constant force. Show that the path is a conic section.




CHAPTER V
WORK, ENERGY, IMPULSE

52. Work. A force is said to do work when its point of appli-
cation undergoes a displacement. The amount of work done by
a constant force is equal to the product of the force and the dis-
placement in the direction of the force. For example, consider
the force of gravity. If a particle of mass m drops vertically
through a distance of A units, the work done by

the force of gravity is gngh units. If the parti- ll : s
cle rises vertically a distance of % units, the
work done by gravity is — mgh units.* If the
partiqkadm;‘——jl_fﬁ'_)’lsta;ce of 8 units down a smooth .plane whose
inclination is «, the work done by the force of gravity is
mgs sin g units, or mgh units, where A= ssin« is the vertical dis-
tance moved through, that is, A is the distance in the direction of
the force. If «= 0, that is, if the particle slides along a hori-
zontal plane, the work done by the force of gravity is zero.
Suppose the particle moves along the straight line OX under
the action of a force directed always along the line, but whose
B magnitude is variable. The
0 a da b X law of the variation of the force
being known, its value is known for any position of the particle
on the line. The small amount of work dW,t+ done by the
force F, while the particle moves a small distance dz from the
point P,, is approximately equal to Fydz, where F, is the value
of the force at the point P,(z==z,). Applying the princi-
ples of the Calculus, Chapter XXX, it is evident that the total
work done by the force F while the particle moves from the point
z = a to the point 2 =, is the definite integral of ¥ with respect
to z from a to b; that is,

(€)) W=‘[0Fdx.

® When the work done by a force is negative, it is sometimes said that the particle
dees work against the force.
+ dW is called the element of work ; dz, the element of distance.
109
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Suppose the particle moves in a plane under the action of a
resultant force which is variable in magnitude and direction.
Let P, represent any position of the par-
ticle on the path AB. Let P,C repre-
sent the resultant force in magnitude
and direction. The element of work
dW corresponding to an element of
arc ds is equal approximately to the
value of the force F at P, multiplied

Y]

o X by dscos 6, where 6 is the angle between
the direction of the force and the tangent to the curve; that is,
@ dW= F cos 6ds.

But F cos = F, where F, is the tangential component of the
force F.

The total work done by the force F while the particle moves
from an initial position 8, on the path to any other position s is
obtained by integration. o

) W=J:F,ds
But by (II), Art. 32, and (4), Art. 40, we have
iz o dy
Fi= E‘da + B ds’
By substitution (8) becomes the work integral :
™ w={. " (Fedw+ Fyay).

An important consequence of formula (I) is the application
to plane motion under a constant force. Let the direction of the
Y-axis agree with the direction of the force. Then F,= 0, F,=F,
and formula (I) becomes

v
W= f Fdy = F(y—y,).

Hence in_any plane motion the work done by a _constant forge is
,_(L_l to_the product of the forc force and the distance moved through
in_the direction of the force. . The work is mdependent of the path.
For example, if a particle moves on any plane curve the work
done by the force of gravity is equal to mgh where % represents
the vertical distance moved through.
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Dimensions. Since work has been defined as the product of
force by distance, the relation between the derived unit of work
and the fundamental units of mass, distance, and time is given by
the dimensional equation :

Work = 12888 X lengtli?
time?

ILLUSTRATIVE EXAMPLES

1. A unit particle describes the parabola 2 =4z from z=1toxz=4. Find
the work done by the force whose axial components are F, = 2my, Fy=0.

Solution. Since m =1, (I) becomes
W= _f:‘_':zyaa=4£‘\/5az=; [x‘!]: = 54 units.
Y|

. A

S A
S
bd

8. Find the work done by a force whose axial components are

¢)) F, = —mky, Fy=mkz,
upon a particle moving along the parabola
(2 B=4+y,

fromxz=0toz=2.

Solution. The work integral (I) may be obtained as a function of z in the fol-
lowing manner. From (2), y =2%—4, ... dy = 2xdz, and (I) becomes

W=j;’ (—mk (2% —4) dz+ mlaz-2:cdz)=mkj:: (48 +4) dz = 10§ mk.

PROBLEMS
1. Show that in polar cobrdinates work is given by the formula

W= _’: :O(dep+ Fopdf).

2. A body whose mass is m falls vertically to the earth’s surface from a height
equal to the radius B. Compute the work done by the earth’s attraction during
the fall. Ans. § mgR units.
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3. A body is suspended by an elastic string whose unstretched length is

4 ft. Under a pull * of 100 poundals the string stretches to a length of 5 ft.

Required the work done on the body by the temsion of the string while its length

changes from § ft. to 4 ft. Ans. 200 units.

4. A unil particle describes the circle 22 + y2 = @3, from (0, a) to (a, 0).

Find the work done by the force whose axial components are F, = ky?, F, = kxy.

Ans. ’é a® units,

5. A particle describes the circle z2 4 y2 = a? from the point (0, @) to the

point (@, 0). Prove that the work done by the force whose axial components are
F: = mzy, F, = my2 i8 zero.

6. Calculate the work in problem 5 if the particle moves from the point
(0, — a) to the point (a, 0).

7. A particle describes the circle 22 + y? = a2 from (0, a) to (a4, 0). Find the
work done by the force whose axial components are F, = my, F, = my2.

a(¥ _G\,
Ans. ma (4 3)

8. A unit particle describes the curvex =er — e~ fromz =0toz=2. Find
the work done by the force whose axial components are F; = mz, F, =0.

Ans. 2 units.

9. A particle of mass m describes the hyperbola -z—: - %; =1 from the point

(a, 0) to the point (z, y,). Find the work done by the force whose axial com-

ponents are F, = mz, Fy = my. Ans. T (%! + 5t — a?) units.

10. The equations of motion of a unit particle are z = ¢, y = ¢.. Compute the
work done by the resultant force during the time from ¢ =0 to ¢t = 3.

Ans. 1 (8 —1) units.
11. The equations of motion of a particle of mass m arez =log (¢ + 1), y = ¢.
Compute the work done by the resultant force during the time from ¢ =0to ¢t = 3.
Ans. }} units.
12. A particle describes the parabola «? + yt = o} from (0, @) to (a, 0). Find

the work done by the force whose axial components are F, = kmy, F, = kmxy.
Ans. kma?

30 (6 — @) units.

2
13. A unit particle describes the ellipse :_‘ + g =1 under the action of a force
whose axial components are F; = — z, F, = —y. Compute the work done while

the particle moves from (0, b) to (a, 0).
14. Compute the work done when a particle describes one half of the ellipse

l—_—:z;a—i, under the action of a force directed always towards the origin and
varying inversely as the square of the distance.

p=

*The law of force for an elastic string is HOOXE’S LAw. The tension of an elas-
tic string is proportional to the extension.
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53. Kinetic energy. A particle is said to possess energy when
its condition is such that it can do work against a force which
may be applied to it. If a particle, acted upon by no forces, has
a velocity v, it will continue to move uniformly in a straight line.
Suppose a force, acting upon the particle, brings it to rest after
moving through a certain distance. The force does work upon the
particle, and the particle is said to do work against the force. A
particle in motion, therefore, possesses energy called kinetic energy.
The kinetic energy of a particle of mass m, moving with velocity
v, is defined as one half the product of the mass by the square of the

speed. That is,
Kinetic energy = } mo3.

Dimensions. From the preceding definition it follows that the
derived unit of kinetic energy is expressed in terms of the funda-
mental units of mass, length, and time by the dimensional equation

Kinetic energy = 1358 X OngL1 length?
time?
Comparison with Art. 52 shows that the dimensions of kinetic
energy are the same as the dimensions of work.
If a particle under the action of a resultant force # moxes
along the X-axis from the initial position z, to any other position
z, the work done is given by

o)) W= | Fis.
=2 dy '
Now I,'\= mo——s and by substitution, (1) becomes
(2) e s W= j: mydy.”

If v, is the velocity at the point z, and v the velocity at the
point z, we obtain by integration of (2),

) W= 7—5(0’ —v3) =} mv® — } myl.

The work is therefore expressed in terms of the kinetic energy
at the final and initial positions of the particle. If the initial
velocity is zero, (8) becomes

W=} m,

and we have proved for rectilinear motion the
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THEOREM. The work done by the resultant force while a particle

. 8tarting from resf acquires the velocity v is equal to the kinetic energy
of the particle.

If the velocity of a particle changes from the initial value v,
to the final value v, equation (8) gives for rectilinear motion the

THEOREM. In the displacement of a particle the work dome by
the resultant force is equal to the difference of the final kinetic energy
and the initial kinetic energy.

Comparison of equations (1) and (3) gives

the energy equation
[¢9)) B —v) = | Fda,

—
e

for rectilinear—motion. When the force F is a
given function of the distance, integration of (II)
leads to an expression for the speed as a function
of the distance.

IrLusTRAaTIVE Exanpre. Find the velocity of a body fall-
ing from a distance A from the center of the earth.

Solution. The earth’s attraction varies inversely as the square of the distance

from the center. Hence at P where OP =z, we have F, = — m—;-’, where A3 is the

absolute intensity. Using the energy equation, the result is
=( = (=% —maa(1_1
}moz_j;r,az_j; xgdz_.mk(x h),

since 2= 0A=Ah,v=0, whent =0.
1 1Y
=282 =2 ).
*=2#(;3)
But F, = — mg when z = radius of earth = R.
.'.——';—?‘k—az—mg,andk’:R’y.
Hence 11
1 =2 22
® o7 (1-1)

When the body reaches the surface, z = R, and (1) becomes
¥ =29R— ?_;‘ﬂ

If the particle falls from an infinite distance (A = ), the velocity upon reach-

ing the surface of the earth is V2gR. Expressing R and ¢ in miles, we have
R = 4000, =6%§5’ and the velocity from infinity is approximately 7 miles per

second.



WORK, ENERGY, IMPULSE 115

If the particle moves along a plane curve from the initial posi-
tion s, to any other position s, where 8 denotes the length of arc
measured from a fixed point on the curve, the work done upon it
by a force F' is given by (8), Art. 52:

@ W= j:F', ds.

Now, by (IV), Art. 50, F, =mv%, and by substitution, (4) becomes

%) W= j::;rwdv.

If v, is the velocity at the point s, and v the velocity at the
point 8, we obtain by integration of (5)

6 W= %(v’ — ) =4 mvd —  mygl.

Equation (6) shows that the preceding theorems, p. 114, hold
also for plane curvilinear motion.

Comparison of (6) and (I) gives the energy equation for curvi-
linear motion :

dam %‘(vﬁ —ot)= j: :(.F.dw + Fdy).

When the components F, and F, are given functions of the
position (z, y), integration of (III) leads to an expression for the
speed as a function of the position.

IrLusTRATIVE Exampre. A bullet with an initial velocity of 1500 ft. per
second, strikes a target at 1200 yd. distance with a velocity of 900 ft. per second.
Supposing the range of the bullet is horizontal, compare the mean resistance of the
alr with the weight of the bullet.

Solution. Denoting the constant resistance of the air by — F, we find that the
work done by this force is — 3600 F. Hence the work equation gives

..330017:%(17’—90’) =12'(9oos- 15009) ,

whence F = 200 m.
Since the weight = 32 m,
we have

resistance __ 25

weight 4
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PROBLEMS

1. A particle is projected in any direction with the velocity v, and then falls
freely under the action of gravity. Find the energy equation.

Ans. v—v2 =2 gh, where h = vertical distance.

2. A particle moves in a circle of radius @ under a constant tangential force mf.
Find the energy equation.

Ans, aff = -"QT""Q (6 = angle moved through).

8. Find the energy equation for a force parallel to one axis and proportional
to the distance from the other.

4. With what velocity must a particle be projected from the surface of the
earth in order that it may never return, no force except the earth’s attraction being

supposed to act ?

5. A bullet moving with the speed of 1000 ft. per second has its speed reduced
by 100 ft. per second in passing through a plank. How many such planks would
the bullet penetrate ? Ans. b,

6. A bullet fired with a velocity of 1000 ft. per second penetrates & block of
wood to a depth of 12 in. Assuming the resistance of the wood to be constant,
prove that if fired through a board 2 in. thick, its velocity would be reduced by
about 87 ft. per second.

7. A laborer has to send bricks to a bricklayer at a height of 10 ft. He
throws them up so that they reach the bricklayer with a velocity of 10 ft. per second.
‘What proportion of his work could he save if he threw them 80 a8 only just to reach
the bricklayer ?

8. A particle moves under a central attraction proportional to the distance.
Find the energy equation. Ans. k(6® — po?) = o8 — vt

9. A particle moves under a central attraction inversely proportional to the

uare of the distance. Find the energy equation. .
5 gy ©q Ans. &’—(—2—-L=172— vo*.
P Po

54. Constrained motion. Dynamic pressure. The motion of
a particle is said to be constrained when it is confined to a certain
curve or surface ; for example, a bead sliding on a wire, or swing-
ing on a string, or moving on an inclined plane. In constrained
motion, the forces acting upon a particle may be divided into
two classes:* (1) the impressed forces; and (2) the pressure of
the constraint.

Two cases are to be distinguished. (1) On a smooth curve
the tangential component of the force of constraint is zero, that

* The difference between the impressed forces and the force of constraint is that
the former are given directly, while the latter is not given directly, but its effect upon
the motion is specified.
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is, there is no friction. (2) On a rough curve the tangential com-
ponent of the force of constraint is called the sliding friction.
We suppose, for the present, that the curve is smooth. The case
of a rough inclined plane is treated later, Art. 67.

Making use of the intrinsic force equations, Art. 50, we have

normal
o normal
av mT =Fa= { }::;g:essed } + { ressure] :

The impressed forces being known, their noimal components are
known ; R, the radius of curvature, may be calculated from the
equation of the path, and »® may be found from the energy equa-
tion. Hence formula (IV) determines the normal pressure.

The normal pressure is exerted by the path upon the particle.
In many practical problems it is important to know the normal
pressure exerted by the particle upon the path. This is given by

NewtoN’s THIRD LAw oF MortIoN. To every action there
is a corresponding reaction, equal in magnitude but opposite in
direction. .

The curve exerts a normal pressure on the particle. Hence
the particle exerts a pressure equal in magnitude but opposite in
direction on the path. In the case of a bead sliding on a surface,
this is called the dynamic pressure. In the case of a particle
swinging on a string, it is the tension in the string. From (IV)

* we obtain
dynamic normal
QD) {pressure ] = {lmpressodJ -—’”T”’.
on path force

The motion is said to be free when the dynamic pressure is
zero. :
It must be remembered that normal forces are resolved along the

directed normal. The resultant force, M, acts always towards the

R
center of curvature or inwards. If the nor- '
mal impressed force acts inwards also, as in )\
(a), then the dynamic pressure equals numeri- @ ()
cally the difference of the other two forces. On the other hand,

if the normal impressed force acts outwards, as in (4), then the
dynamic pressure equals numerically the sum of the other forces.
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When v =0, that is, when the particle is at rest, the pressure
on the path equals the normal impressed force. For this reason,
in this case, the latter is also called the static pressure. The term

—"—"1—;:, which gives the change in pressure due to the motion, is

commonly called centrifugal force. From (IV) this force is equal
and opposite to the resultant normal force and acts always out-
wards.*

In terms of static pressure and centrifugal force, equation (V)
may be written

{ dynamic} - { static } + { centrlfugal} .
pressure pressure force

Since the centrifugal force acts always outwards, it follows that
the dynamic pressure is numerically equal to the sum or difference
of the centrifugal force and static pressure according as the latter
is outwards or inwards.

ILLUSTRATIVE EXAMPLES

1. A heavy particle is constrained to move in a smooth fixed semicircle whose
plane is vertical. Find the pressure at the lowest point.

Solution. The impressed force is weight. If the particle falls from P to A, the
work done is mg - AM=mg (AC— MC)=mga (1 —cos @), if a is the radius.

C Hence, using the energy equation, and assuming the
particle to start from rest at P, we have
*\a (1) § mv® = mga(1—cos ), or v* =2 ag(1—cos a).
The normal impressed force acting outwards, we ob-
M| p tain for the pressure at the lowest point,

i mg+'—”af=mg+2mg(l—eosa)=mg(3—2008a).

If the particle starts at the highest point of the semicircle, & = %, then the pressure

equals 3 mg. That is, the pressure at the lowest point is trebled by the motion. This
increase of the static pressure by motion is & matter of importance. For example,
in a scenic railway the structure must withstand not only the weight of a car and
its occupants, but also the added pressure due to motion. This added pressure
equals the centrifugal force.

\ ¢ It must be clearly understood that the centrifugal force is not an actual force act-
| ing on the particle. It is the reaction of the particle against the normal component of
the resultant force. By the first law of motion the particle tends to move in a straight
line. If it moves in a curved path, centrifugal force is a convenient term to designate
the magnitude of the normal force which must act on a particle of mass m and velocity

: v, in order to produce the curvature ll? in the path.
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2. A heavy particle is suspended from a fixed point by a string of length a. A
horizontal velocity v, is suddenly imparted to the particle so that it begins to de-
scribe a vertical circle. Determine whether the particle will oscillate or the string
become slack.

Solution. The work done by the impressed Y
force weight when the particle moves from O to P
is negative and equal to —mgy, if OM=y. Here
the energy equation gives

@) 3 mv? — § moe? = — mgy, or
02 =902 — 2 gy.

The normal impressed force is the component of
the weight along the radius and equals

mg cos &= mg %{7(3=a_;g mg.

Hence from (V), since the dynamic pressure is in mg
this case the tension, we get

Tension:mgu+ﬂ’_’=mg(1_l) +m(?.n’_‘:§22)
a @ a) a

3 .
® =mg + 700 200,

If the particle oscillates, the velocity at the highest point must vanish. From
(2), if 92 — 2 gy =0, we obtain y = ‘2-’9:—’ as the corresponding height. Since this
height must be less than a radius, a necessary condition for oscillation is v? < 2 ag.

If the string becomes slack, the tension must vanish. From (38), if

we have y ='—’ﬂ?3+—“f as the corresponding height. This must be less than 2 g,
- g

and from ?"—’;-;21< 2 a, we get v 8 < b ag as a necessary condition for the tension
vanishing. ‘
Subtracting the two heights found, we obtain

@ vl+ag vl _2a9—vf
8g 2y 6y
Comparison of the inequalities and interpretation of (4) gives the criterion :
If v,2> 6 ag, the particle describes the whole circle. If 92 <5 ag and > 2 ag, the
tension vanishes, the string becomes slack and the particle will leave the circle and
fall freely. If v2 <2 ag, the equation (4) shows that the velocity vanishes before
the tension, hence the particle will oscillate.

8. A particle is attached to the end of a fine thread which just winds around
the circumference of a circle of radius @ at whose center there is a repulsive force
varying as the distance and of absolute intensity x. Find the time of unwinding
and the tension at any time.
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Solution. The path is an involute of the given circle.
force acts along the radius vector OP, we have, using polar codrdinates,

Fp=mup, Fg=0.
Hence, by the energy equation, we have

;mv*=f'mmp=;mnw—a*),

since the particle is at rest at 4 where p = a.
(¢Y) <0 =pu(p? - a?).

B
[

SOP. Also PS =arc SA. Hence cosy = cos SOP = o0P=

also OP® = 08* + SP* we have s
P = a? + a?al, or p? — a2 = qlal.

Hence (1) becomes

@) v = (p? — a?) = ualad.

Now vp =vcosy =0 5. <. using (2),
3 v,=f—;f=vg=\/;a p’—a’, or __pdp =\/;adt
t P P \

Integrating, remembering that p = a when ¢ = 0, we obtain

) Vi —at =Vuat,oralso, @ =Vut, [by (2)].
2%

‘When the string is unwound, & = 2 », and hence ¢ = 7
®

(£~
3
I
e
R

Since the impressed

Now introduce properties of the involute. P.S is the normal at P, .. ¢ = angle
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The pressure on the path is the tension. In the figure,
Fn,= Fginy = Fsin POS= F-z-q:mwa;“-:muaa.
oP P
Also ﬂ};—’ = "“;‘“;“’ = muaa. Since F, acts outwards, the tension is the sum of F,

and the centrifugal force ; that is, tension = 2 muaa = 2 mu‘at. Hence the tension
constantly increases and reaches the maximum value 4 muar.

PROBLEMS

1. A heavy particle slides from rest down a smooth curve. If A is the vertical
height fallen through, prove v =2 gh.

2. A heavy particle falls down an inclined plane whose inclination to the
horizon is . Show that the dynamic pressure is constant and equal to mg cos a.

8. A particle slides down a smooth plane whose inclination to the horizon is
80°. What is the velocity when it has traversed a distance of 20 ft. ?
Ans. 253 ft. per second.

4. A heavy particle slides on the exterior of a vertical circle. If the particle
is just started at the highest point, show that it will leave the circle and fall freely
after sliding through a vertical height equal to one third of the radius.

5. A heavy particle is constrained to move in a circle under a repulsive center
of force lying on the circumference and varying as the distance. The particle just
starts from rest at the center of force. Find the pressure,

Ans. 8 ;na"’ , where p = distance from center of force and a = radius.

6. A heavy bead is constrained to slide on a smooth wire of the shape given
by one of the following equations (assuming the y-axis vertically upwards). It
starts at the point indicated. Find the pressure at the end point given.

(a) PP=4z, start (4,4), end (0,0).
(b) 423 + 13 =16, «o0,4), % (2,0).
(¢) y=cosz, “o01), “ (g, o).
(@) z=aarcversg- VZ2ay—y3, ¢ (x,2a), © (2w, 0).
(e) y=2%, “(28), ¢ (0,0).
) y=—1, *0,0), * @,-1.

7. If, jn problem 6, the bead slides on the exterior of the given curve, find
where it will leave the curve,

8. A heavy bead is constrained to move on a smooth vertical circular wire.
Show that the bead will describe the whole circle if projected from the lowest point
with a velocity greater than 2Vag, where q is the radius of the wire.

9. A particle is attached by a string of length ! to a point in the same hori-
zontal plane. What is the least upward velocity with which it must be projected
80 that it shall describe & circle ? Ans. V3gl.
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10. A particle hangs freely from a string of length 7; it is projected horizon-
tally with a velocity V4 lg. Find how high it rises before the string becomes slack.
Ans. §1.

11. A weight of 10 Ib. is fastened by a string which passee through a hole in a
smooth horizontal table to a weight of 1 lb, which hangs vertically. The first
weight is revolving on a table about the hole as center. How many revolutions are
there per minute if the horizontal portion of the string is 15 in. long?

12. A ball is hung by a string in a railway carriage which is rounding a curve
of 1000 ft. radius with a velocity of 80 mi. an hour. Find the inclination of the
string to the vertical. Ans. arctan 3%,

~18. A heavy particle is suspended by a string from a fixed point and rotates
in a vertical circle. Show that the sum of the tensions of the string when the par-
ticle is at opposite ends of a diameter is the same for all diameters.

14. A particle falls down a vertical circle, starting from rest at the highest
point. If, when at any point, its velocity be resolved into two components, —one
passing through the center, the other through the lowest point of the circle, — prove
that the latter is of constant magnitude.

16. A bead is constrained to move on a circular wire and is acted upon by a
central force tending to a point on the circumference and varying inversely as the
fifth power of the distance. Show that the pressure is constant.

18. A body describes a parabola under the action of two equal forces, one
tending to the focus and varying inversely as the distance, the other parallel to the
axis. Show that the speed is constant.

17. A particle is constrained to move on a logarithmic spiral p =ae™® in a
central fleld for which the force varies inversely as the cube of the distance. Show
that the pressure varies inversely as the distance. When is the motion free ?

18. A particle describes a parabola freely under the action of two forces, one
a repulsion from the focus varying as the distance, the other parallel to the axis
and equal in magnitude to three times the former. Show that the initial velocity is
2 poVu, Where p, is the distance from the focus and u is the absolute intensity of the
repulsive force.

55. Units of work and energy. Power. Work is the product
of force and displacement. Hence unit work is done when unit
force causes unit displacement. By the energy equation (III),
Art. 53, we infer that unit change in kinetic energy arises when
unit work is done. The nnit, of energy is accordingly the same
as the unit of work. If ‘scientific units are employed, the unit
of distance is the foot, the unit of force is the poundal, and the
unit of work and energy is called the foot-poundal. If technical
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units* are employed, the unit of force is the pound and the unit
of work and energy is called the foot-pound. Since one pound of
force = g poundals, we have

1 foot-pound = g foot-poundals.

In the French system the unit of distance is the centimeter, the
unit of force is the dyne, and the unit of work is called the erg.

Power. The question of time does not enter in calculating
the amount of work done. Power is defined as the rate of doing
work. The unit in the English system is the korse power, which
is the equivalent of 550 foot-pounds per second, and in the
French system is the force de cheval, which is the equivalent of
76 meter-kilograms per second.

The relation between the units in the English and French sys-
tems is exhibited in the following table of equivalents:

1 foot-poundal = 4.214(10)5 ergs.
1 foot-pound = 1.356(10)7 ergs.
1 horse power = 1.014 force de cheval.

PROBLEMS

1. Compute the energy of a body weighing 300 lb. and moving at the rate
of 16 ft. per second. Ans. 1200 foot-pounds.

2. A body weighing 10 lb, is thrown upward against gravity. Compute
the work done upon it by its weight (@) while it rises 10 ft., (b) while it falls

10 ft. Ans. (a) — 100 foot-pounds; (b) + 100 foot-pounds.
If the resistance of the air amounts to a constant force of 2 lb., compute the
work done by it in both cases. Ans. — 20 foot-pounds in each case.

8. If a body of 10 1b. mass is projected horizontally on a rough plane with

a velocity of 50 ft. per second, how far will it move before its velocity is reduced
to 20 ft. per second, the retarding force due towfriction being constantly 6 1b.?

Ans. 66.2 ft.

¢ The energy equation (III), Art. 53, was derived under the assumption that scientific
units are employed, that is, force is equal to the product of mass by acceleration. If
technical units are used, we have the relation
mass X acceleration ,
g

Force =
and the energy equation becomes ]
‘Work done = change in kinetic energy = 2L”5 (v2 —v3y).
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4. A body weighing 10 1b. falls vertically under gravity against a constant
force of 11b. due to the resistance of the air. How far must it fall in order that
its velocity may change (a) from zero to 20 ft. per second, (b) from 10 ft. per
second to 20 ft. per second ? Ans. (a) 6.9 ft.; (b) 6.2 ft.

5. A mass of 1000 1b. is moving with a velocity of 2 ft. per second. (a) What
force will stop it in 0.1 second ? (b) What work is done by the force in stopping it ?

Anas. (a) 20,000 poundals; (b) 2000 foot-poundals.

8. Water is to be lifted 150 ft. at the rate of 5 cu. ft. per second. What
horse power is required ? Ans. 85.2 HP.
(1 cu. ft. of water weighs 62.5 1b.).

7. Compare the power of two men one of whom can do 4000 foot-pounds of
work per minute and the other (10)7 ergs per second.

8. A steam crane lifts 26,280 1b. 1560 ft. in 8 min., What is the horse
power? Ans. 18.45 .

9. (1) How long will it take a 8 FP engine to raise 12 T. 42 ft. ? (2) From
what depth will a 22 HP engine raise 13 T. in one hour ?

10. The monkey of a pile driver weighing 1000 1b. is raised 20 ft. and

allowed to fall on the head of a pile which is driven into the ground 1 in. by the
blow. Find the average force exerted on the head of the pile. Ans. 120 tons.

11. A train of 60 T. runs a mile on a level track at constant speed. If the
resisting forces are equivalent to the weight of 8 1b. per ton, find the work done by
the engine. What must be the minimum H of the engine to attain a speed of
20 mi. per hour? Ans. 1267 foot-tons ; 25.6 .

12. Suppose the train of the preceding example has steam cut off and brakes
applied when running 15 mi. per hour. If it stops } mi. from where the brakes
were first applied, find (1) the mean resistance; (2) the time taken to stop the
train; (3) the work done by the resisting forces.

Ans. (1) 687.51b.; (2) 2 min.; (8) — 508.2 foot-tons.

18. A train runs (under the action of gravity) from rest for 1 mi. down a
plane whose descent is one foot vertically for each 100 ft. of its length ; if the
resistances be equal to 8 Ib. per ton, how far will the train be carried along
the horizontal level at the foot of the incline ? Ans. 1 mi. 1408 yd.

14. In how many hours would an engine of 18 H° empty a vertical shaft full
of water, if the diameter of the shaft be 9 ft., the depth 420 ft., and the mass of
a cubic foot of water 62.5 Ib. ? Ans. 9.8 hr.

15. The average flow over Niagara Falls is 270,000 cu. ft. per second. The
height of the fall is 161 ft. What horse power could be developed from the falls
if all the energy were utilized ? Ans. 4,940,000 nearly.

16. A particle has been falling for 40 sec. Find (a) the resultant force
which will stop it in 10 sec.; (b) in 10 ft. Ans. (a) 4 m 1b.; (b) 2660 m b,

17. A particle whose mass is 8 Ib,, tied to one end of a fine thread, 6 ft. long,
swings in the arc of a semicircle. Find its kinetic energy and velocity as it passes
through the lowest point. Ans. 48 foot-pounds; 8V/8 ft. per second.
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18. The piston of a steam engine is 16 in. in diameter, its stroke is 2} ft.
long, and it makes 40 strokes per minute. If the mean pressure of the steam is 15
1b. per square inch, what work is done by the steam per minute and what is the
horse power of the engine ? Ans. 265,072.5 foot-pounds ; 8.03 HP.

19. What must be the length of the stroke of the piston of an engine, the
surface of which is 1500 8q. in., which makes 20 strokes per minute, so that with a
mean pressure of 12 Ib. on each square inch of the piston, the engine may be of
80 horse power ? Ans. 73 ft.

20. A hammer weighing a Ib., and moving with a velocity v, strikes a nail.
How far will the nail be driven if it offers a resistance r ? Ans, 89% 11
" g

21. The diameter of a piston head is 1 ft., the steam pressure 20 1b. per square
inch, and the length of the stroke 8 ft. How many strokes per minute must the
engine make to raise 2 cu. ft. of water per second from a depth of 400 ft., assuming
that 0.02 of the energy is lost by friction ? (1 cu. ft. of water weighs 62.5 1b.)

22. A man who weighs 140 1b. walks up a mountain path at a slope of 30°
to the horizon at a rate of 1 mi. per hour. Find his rate of working in raising his
own weight in horse power.

28. An automobile, weighing 1 T., can run up a hill of 1 in 60 at 8 mi. an
hour. Taking the resistance due to friction as 4y of the weight of the car, find at
what rate it could run down the same hill, assuming the horee power developed by
the engine to remain the same.

24. Assuming that a man in walking raises his center of gravity through a
vertical height of 1 in. at every step, find at what horse power a man is working in
walking at 4 mi. an hour, his stride being 33 in., and his weight 168 Ib.

56. Impulse. A second fundamental equation for rectilinear

motion is obtained by integration of the force equation,
dv
F=m—.
dt

Multiplying both sides by dt, interchanging members, and inte-
grating between the limits ¢, and ¢’ for the time, we obtain

f "mdv = f "th.
t t

The second member is called the time-integral of the force
F. If v, and ¢’ are the values of the velocity for ¢=t¢, and
t =1, respectively, then we may write :

"
(¢H) mv' —myy= f Fdt,

or, introducing momentum, o
(VI) Change in momentum = time-integral of force.
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For a reason now to be explained, the equation (1) is called the
tmpulse equation. Changing the limits in (1) from ¢ =10 to ¢t =¢,
it becomes

@ my — mvy = f ‘th.
0

In this equation the force ¥ is assumed continuous. Asa con-
sequence velocity will necessarily change continuously with the
time, and therefore a force cannot cause a sudden change of
momentum. The phenomenon of sudden changes in velocity,
such as are produced by blows, is, however, frequently observed.
Such changes are said to be caused by tmpulses or impulsive forces.
That is, impulses cause changes of velocity in a time too short to

be measurable. In this phenomenon the chang8 0T momentum,

mV — mv, where v and V are respectively the initial and final

velocities, may be observed. For this reason an impulse is said to

be measuréd by the change of momentum it causes, and in scien-
tific units is set equal to this. That is, using R for impulse,

©)) R=mV—mv.

This equation may be regarded as a limiting case of the impulse
equation, and the latter designation is derived .from this fact.
For if F is the mean value of the force ¥ in the time ¢, we have

t
f Fdt = Ft (Calculus, p. 858). The impulse equation (2) may
0

now be written my — mo, = e

To apply this to a sudden change in velocity, we may let ¢
diminish and ¥ increase in such a way that the product Pt re-

M
mains finite and approaches a limiting value, namely,

ilflg Ft=mV— mo,
V and v being as before the final and initial velocities. Compar-
ing with the definition (3), we have

llmlt
R= =0 F,

that is, from the present pomt of view, a sudden change in
momentum may be roughly regarded as caused by a yery great
“force acting for a very small time, and the corresponding impulse
is measured by their product. - - -
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Dimensions of impulse and momentum. Momentum has been
defined (Art. 43) as the product of mass by velocity. Its dimen-
sions in terms of the fundamental units of mass, length, and time
are expressed by the equation

Momentum = mass X length,
time
From the preceding definition of impulse it is clear that its dimen-
sions are the same as those of momentum.

57. Impact. Problems in impact er collision of solids furnish
examples of impulses.

Consider, for example, the impact of a solid elastic sphere
upon an elastic plane surface, the direction of motion being along
the normal to the plane. The phenomena during %
contact may be described as follows :

1. The sphere is compressed until its velocity
is zero.

2. The sphere then assumes its original shape
and a certain final velocity

Obviously, the change in momentum in each
of the two stages described may be regarderas caused by an
impulse, and we shall have by definition, if m is the mass of the

sphere,
R = impulse of compression = mv,

if v is the original velocity, and
R'= impulse of restitution = mv/,
if ¢’ is the final velocity.

Now it is a fact observed by Newton, that the final and initial
velocities are in_a ratio which depends upon the su substances in

contact, and not upon_ the velocity of impact. This constant

ratio, called the coefficient of elasticity, we denote by e, and hence
v’ = — ev, the negative sign indicating reversal in direction. Con-
sequently, the impulses satisfy the relation

@ R' = — ¢R.

The coefficient e is less than unity, if the solid and plane sur-
faces are not perfectly elastic. There is accordingly a loss of energy



128 THEORETICAL MECHANICS

by the impact. No exception, however, is here afforded to the
doctrine of the conservation of energy. The accompanying phe-
nomena of heat, light, etc., indicate a transformation of energy
corresponding to the lost energy of motion.

Oblique impact. If the direction of approach be
inclined at an angle  to the normal, and if the
sphere and plane are smooth, then no change of
motion occurs along the surface of the plane, and
the preceding discussion applies without change to
the normal components of the velocities. That is,

I
!
2

AN

b)) v/=—ey, R'=mv,), R=mv,, R'=—c¢R.
Since the tangentiIl components (along the plane surface) are
equal, that is, v,/ =;/"“~ we shall have

) \.tan 0’=%‘;=lv‘=%tan0.
\ n -€ n

If the solids are imperfectly elastic, tan ' > tan 6, hence ¢' > 6,
and the path is bent away from the normal.

ILLusTRATIVE Exampre. A bullet weighing half an ounce is fired with a
speed of 2000 ft. per second from a rifle weighing 10 1b. If the rifle kicks back
through 8 in., find the average pressure applied by the shoulder in bringing it
to rest.

Solution. Since the impulse acting upon the gun is equal and opposite to the
impulse acting upon the bullet, we have the relation

mo=— m'v/,

where m, v and m/, v denote the masses and velocities of the gun and bullet,
respectively. Substituting the values of m, m,’ v/, we find

v = ¥ ft. per second.

1f F.denotes the average pressure exerted by the shoulder, we have from the work
equation, TR
F.}=1-10.(3)3,
F = 1323 poundals = 24.42 Ib.
x|
PROBLEMS

1. An arrow shot from a bow starts off with a velocity of 120 ft. per second.
With what velocity will an arrow twice as heavy leave the bow if sent off with
three times the force ? Ans. 180 ft. per second.

2. A ball falls from rest at a height of 20 ft. above a fixed horizontal plane.
Find the height to which it will rebound, e being §, and g being 82.  Ans. 11} ft.

whence
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8. A ball falls from a height % on to a horizontal plane, and then rebounds.
Find the height to which it rises in its ascent. Ans. e2h.

4. A ball is projected from the middle point of one side of a billiard table, so
as to strike first an adjacent side, and then the middle point of the side opposite to
that from which it started. Find where the ball must hit the adjacent side, its

leugth being b. 4, At the distance 1—3—_—8 from the end nearest the opposite side.

6. A rifle weighing 8 Ib. is discharged while lying on a smooth horizontal
table. The weight of the bullet is 2 oz., and it leaves the gun with a velocity of
1400 ft. per second. What is the impulse of the kick ?

6. A man weighing 180 Ib. jumps from a boat weighing 110 lb. into a boat
weighing 160 Ib. If the boats are initially at rest compare their velocities after
the jump.

7. A ball whose mass is 5} oz. is moving at the rate of 100 ft. per second
when it is struck by a bat in such a way that immediately after the blow it has a
velocity of 160 ft. per second in a direction making an angle of 30° upward from the
horizontal. Assuming the horizontal velocity to be reversed by the blow, find the
value and direction of the impulse.

8. A shot of 700 1b. is fired with a velocity of 1600 ft. per second from a
85-T. gun. Find the velocity with which the gun recoils, neglecting the weight of
the powder. If the recoil is resisted by a steady pressure equal to the weight of
10 T., through what space will the gun move ?  Ans. 143 ft. per second ; 11 ft.

9. A particle falls from a height 2 upon a fixed horizontal plane. If e be the
coefficient of restitution, show that the whole distance described by the particle

before it has finished rebounding is h: + ::, and that the time that elapses is
\ZRlte '
gl—e

10. A smooth elastic ball is projected horizontally from the top of a tower
100 ft. high with a velocity of 100 ft. per second, and after one rebound describes a
horizontal range of 40 ft. Find the coefliclent of elasticity. Ans. .

11. Two equal scale pans, each of mass M, are connected by a string which
passes over a smooth peg, and are at rest. A particle of mass m is dropped on one

of them from a height s—;‘% , the coefficient of elasticity being e. Find the velocity of

the scal after the first i . . — % (14e).
e pan r the first impact Ans 2M+m( +e)
12. Show that a billiard ball of any elasticity, struck from any point on the
table, and returning to the same point after impinging against the four sides in
order, describes a parallelogram, with sides parallel to the diagonals of the table.

13. A heavy elastic ball drops from the ceiling of a room and after twice
rebounding from the fioor reaches a height equal to one half that of the room.
Show that its coefficient of restitution is v/}.
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14. A heavy elastic ball falls from a height of n ft. and meets a plane inclined
at an angle of 60° to the horizon. Find the distance between the first two points
at which it strikes the plane. Ans. 2V3 ne(1 + e).

16. The sides of a rectangular billiard table are of lengths g and 4. If a ball
of elasticity e be projected from a point in one of the sides, of length b, to strike
all four sides in succession and continually retrace its path, show that the angle of
projection @ with the side is given by aecot 8 = ¢ + ec’, where ¢ and ¢’ are the parts
into which the side is divided at the point of projection.

16. A smooth circular table is surrounded by a smooth rim whose interior
surface is vertical. Show that a ball of elasticity e projected along the table from a

point in the rim in a direction making an angle arctan \/ ﬁ_-:% with the radius

through the point will return to the point of projection after two impacts on the
rim. Prove also that when the ball returns to the point of projection its velocity is

to the original velocity as ERN .

58. Force-moments in a plare. The discussion of this article
will enable us to work out a second * integration of the force

equations.
dv, (/dv

O e g =Famg =

= F,.
Multiply the first of these equations by y, the second by z, and

subtracting, we get

dv dv,
(2) d: ydt> sz_yF'

The second member, zF, — yF,, has a simple geometrical sig-
nificance. If the directed line P@Q represents the force whose
Aaxial components are (F,, F,) and whose point of application is
P(x, ¥), then the coordinates of the point @ are at once seen from
figure a to be (z + F,, y + F,), for

ON= OM+ MN=z+ F, NQ=MP+8Q=y + ¥,
/1T
{4+ )

\
¢ The energy equation, Art. 53, is to be regarded as a first iﬁtegrat:?n of the fo
equations. For writing these in the form : ,l? y o AU
Ay
Mﬂvy- mv:_gF A”""Z d . - ) J ’

multiplying the first by dz, the socond by dy, and adding, gives
m(v.dv, + v,dv,)= Fdz+ F dy.
Integrating, we obtain [
Fm2+v,2)+ C= f (Fdz + F,dy).
But v2=v,2 4 v,3, and hence the result is a form of the equation in question.
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In figure  the area of the triangle OPQ is (Analytic Geome-

try, p. 42)
Y
Q
2 v
P - s
s I
— L —
o] % N X
()

C)) H=z(y+ F)—y(z+ F)]=}(=F,— yF,).

But the area of the triangle equals 1 pF, if p is the altitude
drawn from the origin upon PQ.

@ <. 2F,— yF.=pF.
The product pF is called the moment of the force F with

respect to the origin. The point O is called the center of moments.
The perpendicular distance p is called the lever arm. Hence

Force x lever arm = force-moment.

Equation (4) gives the expression for force-moment in ana-
lytic form. That is,

(VII) Force-moment with respect to the origin =z Fy— yF:,

= (xq-4x
where the axial components of the force are (F,, F,) a}d] t)l?e
point of application is (2, ¥).

Sign of force-moment. The area of OPQ is positive when the
order O, P, Q of the vertices on the perimeter is counter-clock-
wise; negative, if clockwise.

Hence force-moment is positive

Q
if the force acts to cause posi- &
tive rotation (counter-clockwise) P
about the point; otherwise, e
negative. e Q
Evidently, if p=0, the force-

moment vanishes, that is, if the Positive Negative
line of action of the force passes
through the center_of momeuts the force-moment vanishes, Force-

moment t8 unchanged if the point of application is displaced along
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the line of action, the magnitude and direction of the force re-
maining the same. For F and p in (4) both remain constant if
the point of application is so displaced.
Consider next two concurrent forces
F(F,, F,)and F'(F,/, F,), the common point
of application being (z,y). Then, by (VII),
Moment of F=zF, - yF,,
54 . Moment of ' =zF,/ — yF.'.
Adding,
(5) Moment of F + Moment of F' =z(F, + F,)) — y(F. + F,).
Let R be the vector resultant of ¥ and . Then the axial
components of B are (¥, + F,!, F,+ F,/). The second member
of (6) is therefore the moment of R. Hence
() Moment of ¥ + moment of #” = moment of R.
That is, the sum of the force-moments of two cencurrent forces is
equal to the moment of their resultant. This principle is general;
it can be extended to any number of concurrent forces and leads
to the important
THEOREM OF MOMENTS. The algebraic sum of the force-
moments of any number of concurrent forces with respect to any
center equals the force-moment of their resultant.

59. Moment of momentum. Consider the first member of (2)’ 30
Art. 58. This expréssion is a time-rate. For it is easily seen that

(¢)) m( dvy -y dt>_E: z-mv,—y- mv,) b (

Hence the equation (2), Art. 58, takes Y
the form zy)

@ ﬂ—-(z «my, — y - mv,)=zF, - yF,.

This result is called the moment equation -5 \X
for a reason now to be expla.med

The expressions mv,, mv, in the first member of (2) are the
axial components of the vector momentum mv. The expression

¢)) Z .My, — Y - MV,

being entirely analogous to
.,\A‘gf ot z- F -y - F, Y

v l.-a
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is called the moment of momentum with respect to the origin. The
moment of momentum is of course variable in any general motion,
and is a function of the time. Equation (2) therefore gives the
relation,

(VIII) ;ﬁ ~(x é/ -4*)

Tw of moment of momentum = force-moment.

In the equations of motion, ¥, and F, are the axial com-
ponents of the ng_nﬂgtz_e_mlmnt of all forces acting.” Hence in
(VIII) the force-moment is the resultant force-moment (Theo-
rem of Moments).

60. Angular momentum. The ex;ression for moment of

momentum is simple if polar codrdinates are used. In the figure,
let p be the perpendicular distance from the center of moments
O to the tangent to the path. Then p is the lever
arm of the vector momentum. Hence, by Art.
59,

(1) Moment of momentum = mv-p.

But in the figure, p=psingy=p- p“iiz.

Also, since =é, (1) becomes N
. A JJ—
(2) Moment of momentum = 'in‘-3 plgf pzd‘ a8 _ p";f

Now (see Art. 22), mp*= momentI of inertia of tfhe particle

with respect to Q( = IO)’ and since d—e_ angular velocity = o,
. dt
we obtain the result,

©)) Moment qf momentum = I .

If this result is compare | with the definition of momentum
(mv), it is seen that momentlof inertia corresponds to mass, and
angular"’)veloclty to hnearv—veloclty From the introduction of
angular velocity, moment of momentum is often called angular
momentum, and momentum proper, linear momentum. We thus

have the definitions - -

Linear momentum = mass x lmear veloczty,
Angular momentum = moment of inévtia x angular velocity.
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Moreover, the results of Arts. 44 and 59 give the equations,

ma "
@ Force = —(lmear momentum);

Q
Iorce-:f- ment = —(angIlar momentum).

W~

Intefatlon of the last equation W;}L gwe the result:
Chang®in angﬁlar momentum = tlmé’-m&gral of force-moment.

This result is to be regarded as a second integral of the force

equation, the other being the energy equation already found -

Comparison should be made with (VI) Ifor
rectilinear motion. In the latter, momentum
has been replaced by angular momentum and
force by force-moment.

.
II,I,////// .

ILvusTrATIVE Exampie. As an application, consider
central motion, that is, motion caused by a force con-
stantly directed towards a fixed center O.

Solution. The force-moment with respect to_O is zero. Hence, choosing O
for origin, (4) gives

mp’%% = constant, or p’%': = constant.
If u is the area of any sector AOP, then
u_;j'pzdo and w— = constant.
The derivative :—z, that is, the time-mte of change of the sectorial area AOP, is
called the areal velocity. Hencein any central motion the areal velocity is constant ;

or also the radius vector sweeps over sectors of equal area in equal times.

61. Fundamental equations. The preceding sections have led
to three types of equations, namely:

Rectilinear Motion. Curvilinear Motion.
ation, Force Equations,
uation, Energy Equation,
juation. Moment Equation.

otion depend for their solution largely upon
nd their application has been seen to be of
tance. The moment equation will be used in
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62. Formulas in dynamics of a particle. For convenience
of reference the chief results in connection with the kinetics of a
material particle are collected here. In every case F denotes the
resultant of all forces acting on the particle.

F, = sum of z-components of all forces.

F, = sum of y-components of all forces.

F, = sum of z-components of all forces.

F; = sum of tangential components.

F, = sum of normal components.

F, = sum of components along radius vector.

F, = sum of components perpendicylar to radius vector.

Force Equations :
&2 s dv,

=m—f=my,—=*=F,

man dt Tdz

mi‘.’i’l = miiﬁx =myp dv, _ F,, | Rectangular

de? de Ydy Coordinates.

@’z md—v‘ mv, dv, =TF,

as a " tds 7

dv __dv mv3 _ . .
m-‘ﬁ mv— F, = = F,, Intrinsic Equations.

o ola)
{ et g dt } =T Polar
p’ ) Coordinates.

P dt
Work Integrals :

Work = f (F.dz + F,dy), Rectangular Codrdinates.
Work = f Fds, Intrinsic Equations.

Work = f (F.dp + F,pdf),  Polar Cosrdinates.

Energy Equation :

Work done by all forces acting = } mv? — § myl,
initial velocity = v, final velocity = v.
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Impulse Equation :
Impulse = mV — mo,
initial velocity = v, final velocity = V.

Moments :

Force-moment = zF, — yF,,
point of application = (z, ), center of moments = (0, 0).

Moment Equation :
Force-moment =% (angular momentum) = %(Io“’)a

I, = moment of inertia and ® = angular velocity with
respect to (0, 0).




CHAPTER VI
MOTION OF A PARTICLE IN A CONSTANT FIELD

63. Field of force. A region in which force is known to exist
is called a field of force. A body free to move when placed in
such a field will in general not remain at rest. The acceleration
which will be imparted to a material particle at any point in a
field of force must be regarded as characteristic for the field at
that point. Upon particles of different masses m,, m,, etc., at the
same point the field will exert different forces. These forces will
have the same direction, but different magnitudes, namely, m, f,
myf, ete., if f is the acceleration at the point. Consequently, if we
know the acceleration due to a field at each of its points, we know
the force the field will exert upon any material particle. For this
reason a field of force is said to be determined when the vector accel-
eration at every one of its points i8 known.

In general the acceleration due to a field of force is different at
different points of the field. When the acceleration is the same at
every point, the field is said to be constant or uniform. A familiar
and important example of a constant field is afforded by consider-
ing the earth’s attraction, that is, the force of gravity, in any small
region. All bodies are attracted towards the center of the earth.
Particles falling freely from rest will describe rectilinear paths
which may be regarded as parallel if the region under considera-
tion is small, and experiment shows that the acceleration at every
point of such a region is constant.

64. Rectilinear motion under a constant force. This type of

motion is very important. We consider the motion of a material

L P

o 8

particle along a straight line, the force causing the motion being
directed along that line.

Assume a positive direction and an origin of distance on the

path, and let 8 denote the distance from the origin to any position

187

>

-
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P. The driving force F is then mf or — mf, according as its
direction is positive or negative. From the force equation we have

m—=:i:mﬁ or %::&f.

Integrating, using s, and v, to determine the initial position
and velocity, we derive the result:

The velocity and position of a material particle moving along a
straight line under a constant force are given by

@ v=0o1fl 8=280+0ct ][0,

in which f denotes the constant acceleration, and v, and &, determine
the initial velocity and position, respectively. The positive or nega-
tive sign holds according as the distance and force have the same or
opposite directions.

The energy equation is

imv’—;}mvo’=f‘Fds= F(s—38y) = £ mf(s— 8p).
(3

Hence if d =8 — s, = distance moved, this equation gives, by solv-
ing,

an vi=v+ 271d,
expressing the final velocity in terms of the initial velocity and

distance moved.
When “the initial velocity is opposed to the force, from (II),

¥ =192 —2fd, and (I), v=v,—ft. Hence v=0 when t="2, and
thend = %0;, the velocity constantly diminishing until this position
is reached, and thereafter constantly increasing.
Analysis of (I) is important. If v, =s,= 0, then
v=:|:ﬂ, '3=_:téﬂ2, = :t2f8,

formulas giving the velocity and distance due to the force only.
To obtain (I) and (IT), we add on the initial velocity to get the final
velocity, and the distance (= v,t) due to it and the initial distance
to get the total distance.
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ILLUSTRATIVE EXAMPLES

1. Rectilinear motion under gravitation. In this case f=g. We distinguish
two problems. A

Particle projected vertically upwards. Taking the upward direction as
positive, and the origin as the point of projection, we have in (I), 8o = 0, and
obtain

) 0 =199 — g, 8 = vot — } gt3, A

in which v, is the velocity of projection. The highest point A is reached
when v=0. Then ¢t= 2, and s = OA=;—°’. This is therefore the
greatest height. 4 J :

Particle falling freely. Choosing the downward direction as positive, we
obtain from (I), H

@) v=100+ gt, 8 =80 + vot + § g%
If the particle falls from rest at the origin, then v = 0, 8o = 0, and we get
©)) v=gt, 8=14%gt? v =2¢s.

Hence the velocity acquired in falling freely from rest a distance 4 G
equals V2 gh.

2. Atwood's machine. Let the figure represent two masses m; and mg sus-
pended by an inextensible thread passing over a smooth pulley.
The motion of the system is known if the motion of one of the
particles mg is known, that is, if ms descends with an accelera-
tion /. In other words, if the acceleration of m. is f, the ac-
celeration of m; is — f. Denoting by T the tension in the
thread, that is, the pull of the particle on the thread, the re-
sultant force acting on mg is mgg — T, and on m,; is myg — T.
Hence the force equation gives
{M — T'=ma/,
myg — T =—my /.
Eliminating T and solving for f, we find
My —m 3
S= mg + my g
The acceleration is constant and the equation of motion is found by substitution
i (D).
Eliminating f from the force equations, we obtain the tension in the thread,
namely,

my
Mg

T=Mg.
my + m2

PROBLEMS

1. How long will it take a body to fall from rest through 626 ft.? Find the
velocity acquired. How far does it fall in the fourth second ? (g= 82.)
‘ Ans. 38 sec.; 200 ft. per second; 112 ft.
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2. How long will it take a body to acquire a velocity of 260 ft. per second
falling from rest ? Ans. 52 sec.
3. (1) How high will a stone rise which is projected upwards with a velocity
of 256 ft. per second ? (2) What is its position, direction of motion, and velocity
at the end of the tenth second ? (g = 82.)
Ans. (1) 1024 ft. (2) 960 ft. high ; v = 64 ft. per second downwards.
4. Compare the momentum of a 8-1b. weight after falling 30 ft. with that of a
half-ounce bullet having a velocity of 2000 ft. per second. Ans. 24V30: 135,
5. With what velocity must a body be projected downwards that it may over-
take in 10 sec. another which has already fallen through 100 ft. ?
Ans. 90 ft. per second.
6. A body is projeéted upwards with a velocity of 80 ft. per second. How
long will it be in returning to the starting place ? With what velocity will it
return? (g =32.) Ans. 6 sec. ; 80 ft. per second.
7. A particle has an initial velocity of 125 cm. per second, and an acceleration
(1) of 10 cm. per second each second ; (2) of — 10 cm. per second each second.
How long will it take in each case to move over 420 cm. ? Explain the results.
Ans. (1) 8sec. or — 28 sec.; (2) 4 sec. or 21 sec.
8. The velocity of a particle moving in a constant fleld is ¢ cm, per second
at the end of ¢ seconds, and b cm. per second at the end of (¢ + 1) sec. What was
the initial velocity and acceleration ? Ans. v,=a+(a—b)e,f=b—a.
9. The sum of the two weights of an Atwood’'s machine is 12 Ib. The heavier
weight descends through 128.8 ft. in 8 sec. What are the values of each weight ?
(g=322.) Ans. 6.751b., 5.26 Ib.
10. A 2-lb. weight carried on a spring balance in a balloon has an apparent
weight of 2.4 1b. when the balloon is ascending. What is the acceleration of the
balloon ? What should the body weigh if the balloon is descending with an accel-
eration of 10 ft. per second ? Ans. 88.4 ft. per sec. ; 3¢ Ib.
11. A mass of 12 lb. rests on a.smooth horizontal table. A second mass of
1.5 Ib. is attached to the first by means of a cord passing over the edge of the table.

Find the following :

(1) The acceleration of the system. Ans. A3 ft. per second.
(2) The space described in 3 sec. 16 ft.
(8) The velocity attained at the end of 5 sec. 180 ft. per second.
(4) The force on the string. ’ 1§44 poundals.
(8) The time required for the system to move 120 ft. 3V sec.

12. Two unequal masses are connected by a weightless inextensible string
passing over a smooth peg. What must be the ratio of the masses that the system
may move through 24 ft. in 3 sec. from rest ? Ans. 5:1.

13. A train passes another on a parallel track, the former having a velocity of
45 mi. an hour and an acceleration of 1 ft. per second per second, the latter a
velocity of 30 mi. an hour and an acceleration of 2 ft. per second per second. How
soon will the second be abreast of the first again, and how far will the trains have
moved in the meantime ? -
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14. A body is dropped from a balloon at a height of 70 ft. from the ground.
Find its velocity on reaching the ground, if the balloon is (a) rising, (b) falling
with a velocity of 30 ft. per second.

156. A stone is dropped into a well, and the sound of the splash reaches the
top after 9 sec. Find the depth of the well, the velocity of sound being 1100 ft,
per second.

18. A body whose mass is 5 Ib., moving with a speed of 160 ft. per second,
suddenly encounters a constant resistance equal to the weight of }1b., which
lasts until the speed is reduced to 96 ft. per second. For what time and through
what distance has the resistance acted ?

17. A body falls freely from the top of a tower and during the last second of

its flight falls 3§ of the whole distance. Find the height of the tower.
Ans. 100 ft.

18. Two scale pans of mass 3 1b. each are connected by a string passing over

a smooth pulley. Show how to divide a mass of 12 1b. between the two scale pans
80 that the heavier may descend through a distance of 50 ft. in the first 5 sec.

Ans. In the ratio 19:13.

19. A string hung over a pulley has at one end a mass of 10 1b. and at the

other end masses of 8 and 4 Ib., respectively. After being in motion for 5 sec. the

4-1b. mass is taken off. Find how much farther the masses go before they come

to rest. Ans. 29 ft. 9 in. nearly.

20. If the string in an Atwood’s machine can bear a strain of only } the sum

of the two weights, show that the least possible acceleration is -\7- Find the least
ratio of the larger to the smaller weight.

21. A mass m pulls a mass m’ up an inclined plane, inclination e, by means
of a string passing over a pulley at the top of the plane. Show that the accelera-
tion is w

m + m'

28. A mass of 6 oz. slides down a smooth inclined plane, whose height is half
its length, and draws another mass from rest over a distance of 3 ft. in 5 sec. along
& horizontal table which is level with the top of the plane over which the string
passes. Find the mass on the table. Ans. 24 1b. 10 oz.

23. A weight P is drawn up a smooth plane inclined at an angle of 30° to the

horizon, by means of a weight @ which descends vertically, the weights being con-
nected by a string passing over a small pulley at the top of the plane. Find the ratio

of Q to P if the acceleration is % Ans. @ =P.

24. A juggler keeps three balls going with one hand, so that at any instant two
are in the air and one in his hand. Find the time during which a ball stays in his
hand if each ball rises to a height of a ft.

25. A stone dropped into a well is heard to strike the bottom in ¢ sec. Find
the depth of the well, the velocity of sound being a {t. per second.

Ans. [Vat+ ; \/(; ]
1]
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28. The two masses of an Atwood’s machine are 8 and 10 1b., respectively, and
the string is clamped so that no motion can take place. If the string is sud-
denly unclamped, find the change in pressure exerted on the pulley.

27. A mass of 10 lb. resting on a smooth inclined plane, inclination 80°, h
connected by a string passing over a pulley at the top of the plane to a mass of
10 Ib. hanging vertically. Find the tension in the thread (1) when the weight
on the plane is held fixed, (2) when the hanging weight rests on a support, (3) when
both weighta are free to move.

65. Curvilinear free motion. We first prove the

THEOREM. If a free material particle is projected into a constant
feld in a direction obligue to the direction of the force of the field,
the path will be a parabola.

Let the acceleration due to the field be f and its direction
opposite to the direction of the ¥Y-axis. The axial components of
the force at any point are

F, = 0, F, y= - ”if‘
Hence the rectangular force equations are

&z Ty _ _

Let the initial position be (zy g,), the initial velocity v, and

the angle which v, makes with

¥ the X-axis« Then the com-

ponents of the initial velocity

are v, cos « and v, sin a, Te-

sine spectively. Integrating

R et ' equations (1) and determining

0 x the constants by the given
initial conditions, we obtain

(@) z=zy+vyco8a-t, y=y,+ vysina-t—} 3
Eliminating ¢, the equation of the path is

©)) Yy—Yo=tana(z—1z) — (z—zp)},

which is the equation of a parabola w1th its axis parallel to the
Y-axis. Q.E.D.

The distance moved through in the direction of the force is
— (y — ¥,)- Hence the energy equation gives

) = — 21 (y — yo)-

cos2
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The applications of the preceding theorem are mainly to prob-
lems of the motion of projectiles near the surface of the earth.
Neglecting the resistance of the atmosphere and the variation of
the force of gravity, the circumstances of the motion are given by
(2) where f=g. If the origin of codrdinates is the initial posi-
tion, the X-axis horizontal, and the positive direction of the
Y-axis upwards, the equations of motion are

dain @ =voc08a -t y=v°sina.¢_%gta.
and the equation of the path and the energy equation become,
respectively, _ g .
v=tana - goq omia o
av) V=0 - 2gy.

The projectile reaches its greatest height A when the velocity
in the direction of the Y-axis is zero. Then v,=0, and
v=1v,=v9,co8 «« Making these
substitutions in (IV), and setting

y = H, we obtain :
29H = v} — v cos? = v 3 sin’a. H\
’ . __vlsinte —
G) - H=2g 5 oF - N

The time of flight 7' is the time elapsed when the projectile
again reaches the X-axis. Setting y =0 in (III), we obtain

0=1v,8ina-t —%gt‘, whence ¢ = 0 (at 0),

2v,sin e

ort=—2"0—.

2vysine

=2%51%
g

The horizontal range R is the intercept OA on the X-axis, the
value of z when ¢t = 7. Setting ¢ = T in (III), we obtain

) R 4

2vy’sinacosa_ vlsin2ea
g g
M . Re= vosin2a
g

z=vyco8a-T=

From (7) it is obvious that the mazimum range for a given
velocity of projection results when sin 2« =1 or a = 45°.
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ILLUSTRATIVE EXAMPLES

1. Find the range on an inclined plane through the origin with an inclination 6.

Solution.. The equation of OC is y =tan@.z. Substituting from (III), we
have vosinad—%gt’:tanowcosa-t,
_ 29 (sina —tanfdcos @) 2vy8in (a — 6)
- g ~ gcosd
which gives the time when the projectile will strike the plane at C.

Since OC = OMsec 9, and OXM is
the value of z(=vocos @-¢) when ¢ has
the value just found, we readily de-

or solving, t

)

duce the result,
2 . -
0C = 2veicos a ::in(a 0).
vy gcos?d
' L The velocity at C is (by IV)
ol M N\°X y=pf—2g.MC =02—2g.0Csind.

The angle of impact with the plane, namely, y = 7 — 6, is readily found. For
tan r is the slope of the parabola.. Substituting the value of OM (= z) already
found, in this, and reducing, gives
_ sin (6 — ) .

“cos(0+u«) + 2sindtandcos e

tan y

2. Required the elevation in order that the projectile may pass through a given
point, the velocity of projection being a given constant.

Solution. Let the given point be @(x),y). Since this point lies on the
parabola (IV), we have

=taner — —I 2z
n A SwdcoRa
from which a must be determined. Since cos? & =—1—, substituting and col-
tanf ¢ + 1

lecting gives the equation
(1 9713 tan? @ — 292 z; tan &« + (2 vo¥y1 + g7:2) =0,

in which tan a is the unknown.
Since the equation (1) has in general two roots, the point Q may be reached in

4 ol 4X
two ways. To cover all cases, find the discriminant of (1). Since 4 = gz,3,
B = — 202x;, C = 29,3y, + gx:2, we have for the discriminant
A=B*—4AC =4 vo* :tla— 8 003021’71 -4 gﬁx, = 421’(00‘ -2 vo’gyl - 0231’)-
Hence A = 0 if o8 — 20 3gy; — g2 =0,
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or, omitting the subscripts, . gy
2 2 =% ——"O-y.
@ i
The locus of this equation is the parabola A’BA, where OA =2- OB =%, This

parabola is called the bounding parabola. The final statement obviougly is as
follows :

If @ is within the bounding parabola, two parabolic paths pass through it
(A>0and (1) has real and distinct roots).

If @ is on the bounding parabola, one parabolic path passes through it, and this
will touch the bounding parabola at @ (A =0 and the roots of (1) are real and
equal). :

If @ is without the bounding parabola, no trajectory passes through it.

Applied to gunnery, the interpretation of the results is as follows: The
region covered by a projectile with a given muzzle velocity is the interior of a parabo-
loid of revolution whose axis is vertical (obtained by revolution of A’BA around
OY). Any point within the paraboloid may be hit in two ways.

In terms of the greatest vertical height 4, which can be attained with the
given initial velocity vo, the equation of the bounding parabola takes a simple form.
The height A is attained when the particle is projected vertically upwards, and is

given by oot =2 gh.
Substituting this value of v¢? in (2), the equation of the bounding parabola becomes
® 4hy + 22 =4h2

Another convenient form of this equation is obtained by introducing the greatest
horizontal range r. This is found from (7), Art. 65, by putting sin 2« = 1, whence

2
4) r=”7°-=2h,

and the equation of the bounding parabola may be written
h
5 =2 (18 —28).
%) 5( )

3. A man can throw a ball 100 yd. on a horizontal plane. (a) Find the
highest point that he can hit on a vertical wall 35 yd. away. (b) If he stands on a
cliff 160 feet high, how far from the base can he throw ?

Solution. Evidently in either case the greatest distance will be the point
where the bounding parabola cuts the given plane. We have r =100 (yd.), and
hence the equation of the bounding parabola is

@ 200 y = 10,000 — 2.

(a) This parabola will cat the vertical line =35 at the height

M2;0_12§ = 4388 yd.,

which is the highest point on the wall that he can hit.
(b) Since the horizontal plane is 50 yd. below the top of the cliff, we substitute
in (1) y = — 60, and find z=1414 yd
= 1414 yd.,

which is the greatest distance from the base that he can throw.

y=
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PROBLEMS

1. A gun is fired at an elevation of 80°. If the muzzle velocity is 1000 ft. per
second, determine the following : (a) equation of path; (b) range; (c) timé of
flight ; (d) position of the projectile after 2 sec.; (¢) highest point reached.

Ans. (a)y:-‘ng-— 64 g, (p) 1000000V 4

8000000 64 ’

]
(© %m; (d) z = 1000V3, y = 936 ; (¢) 215% ft.
2. In problem 1 find the magnitude and direction of the velocity and its axial
components after 20 seconds.

Ans. v, =500 V3 ft. per second ; v, = — 140 ft. per second.

3. Discuss the circumstances of the motion in problem 1: (a) after the pro-
jectile has passed over a horizontal distance z = 65000 ft., (b) when at an elevation
of 1000 ft.

4. A projectile moves subject to the equations z = a¢, y = b¢ — } gf3. Discuss
its motion fully.

5. Show that a given gun will shoot three times as high when elevated at an
angle of 60° as when fired at an angle of 80°, but will carry the same distance on a
horizontal plane.

6. The range is 800 ft. and the time of flight 6 sec. Find the initial velocity
and the angle of elevation. What is the effect on the range of doubling the initial

velocity ? Ans. vy =100 ft. per second ; sin & =4.

7. (a) A boy can throw a stone 756 yd. on a level. How far from the base can

he throw standing at the top of a cliff 1560 ft. high? (b) If the stone is thrown
horizontally and strikes 450 ft. from the base, what is its initial velocity ?

Ans. (a) 26V'21 yd.; (b) 60V 6 ft. per second.

8. The wheels of an engine running at the rate of 40 mi. per hour encounter
a drop of one quarter inch at the rail joint. How far from the joint will the wheels
strike the lower rail ? Ans. 3L V3 Ht.

9. Show that to strike an object at a distance z on the horizontal plane through

the starting point, the elevation must be & or 90° — « where & = % gin—1 Ea' How

L
do the striking velocities compare in the two cases ? ¢
10. A bicyclist riding a wheel 28 in. in diameter notes that a piece of mud
flying off the top of his wheel has a range of 12 ft. Find the angular velocity of
the wheel and the cyclist’s speed per hour.

Ans. w =144V} rad. per second ; 342V} mi. per hour.

11. A fountain sends out water horizontally in all directions from a central
point a ft. high, with a velocity of ¢ ft. per second. What is the shape of the water
surface and the equation of a section made by the X Y-plane ?
Ans. B4 yp= ?;_°’.
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12. A drop of water flies off a grindstone just at the top. The radius of the
stone is 2 ft., and it makes 1.6 revolutions per second. Find the velocity of the
drop and the point at which it strikes the floor 7 ft. below the axis of revolution.
What is the range if the drop flies off at a point such that the angle of elevation
is 60°?

Ans. v =6V16 + »3ft. persec.; z = § r ft.; range =9‘/§"+3;2“ 2077+ 6134

18. Where must the drop of water leave the grindstone in problem 12 in order
to fall squarely on top of it ? In order to fall tangent to the opposite side ?
_ 18

__ 8
Ans. cma—m, coﬂa_é—;a--

14. An emery wheel, 1 ft. in diameter, bursts into small particles when revoly-
ing 100 times per second. Which particle will fly the farthest, and what is its
initial velocity and range ?

16. Show that the area of a level plane swept by a gun at a height A above the
plane increases proportionally with A, being equal to A + 2AVxA where A is the
ares commanded when the gun is at the level of the plane.

16. What must be the elevation & to strike an object 100 ft. above the horizon-
tal plane and 5000 ft. distant, the initial velocity being 1200 ft. per second ?

Ans. e is given by the equation 9 cos? @ — 460 sin & cos @ + 26 = 0.

17. An engine can send a stream of water vertically 126 ft. How much of a
vertical wall, distant 200 ft., can the engine wet ? Ans. 46 ft.

18. Show that the area commanded by a gun on a hillside is an ellipse, with
one focus at the gun. Find the area commanded by a gun which has a muzzle
velocity of } mi. per second, the slope of the hill being 10°,

19. Determine the angle of projection 80 that the area included between the
path and the horizontal plane is & maximum. Find the area. '
Ans. a=60°; W=£,~/§.
20. Determine the elevation if the range on a given inclined plane is a
maximum.
Ans. Direction of projection must bisect the angle between the vertical
and the inclined plane.

21. Show that the range R of a projectile fired from a height A above a hori-
zontal plane with velocity v, at an angle e is given by

2008 (b + Rtan &) = gR3sec? a.

22. A heavy particle descends the outside of a circular arc whose plane is
vertical. Prove that when it leaves the circle at some point @ to describe a
parabola the circle is the circle of curvature of the parabola at Q.

23. From a train moving at 60 mi. per hour a stone is dropped. The stone
starts at a height of 8 ft. above the ground. Through what horizontal distance
does the stone pass before it strikes the ground ? . Ans. 4V2 1t

24. If the greatest range down an inclined plane be three times the greatest
range up, show that the plane is inclined at 30° to the horizon.
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25. Two balls are projected from the top of a tower, each with a velocity of
60 ft. per second, the first at an elevation of 30°, and the second at an elevation of
45°. They strike the ground at the same point. Find the height of the tower.

Ans. (9—6s/§52‘;&°=2e.5n.

28. The back lines of a tennis court are 78 ft. apart, and the service lines
42ft. Thenetis 8 ft. 8 in. high. Find the horizontal velocity of the ball (a) when
it is returned from near the ground at one back line so as to graze the net and
just strike the other back line ; (b) when it is served from a height of 8 feet, grazes
the net, and strikes the service line.

Ans. (a) 86.4 ft. per second ; (b) 170.84 ft. per second.

27. The Norwegian ski jumping contests in February, 1804, took place on a
snow slope at Holmenkollen 186 yards long. The competitors slid down § of the
slope (which was in this part inclined 15° to the horizon) to a ledge, from which
they took off for the jump. Below the ledge the steepness of the slope increased to
24°, Supposing that the lip of the ledge was 8o curved as to give the jumper an
elevation of 6° above the horizon at the take-off, find the speed at the ledge and the
length of the leap.

28. A particle is projected with velocity 2Vag so that it just clears two walls
of equal height @, which are at a distance of 2 a from each other. Find the time
f passing bet the walls,
of passing between wal Ans. 2\[:..

29. A gun is aimed directly at a target suspended to a balloon. Show that the
bullet will strike the target if the latter is dropped at the instant the gun is fired.

30. Show that the greatest range on an inclined plane through the point of
projection is equal to the distance through which & particle could fall freely during
its time of flight.

81. Three bodies are projected simultaneously from the same point in the
same horizontal plane, one vertically, another at an elevation of 80°, and the third
horizontally. If their velocities be in the ratio 1:1: v3, show that they are always
in a straight line.

32. A heavy particle is placed vet"y near the vertex of a smooth cycloid having
its axis vertical and vertex upwards. Find where the particle runs off the curve

and prove that it falls on the base of the cycloid at the distance (% + \/§)a from
the center of the base, a being the radius of the generating circle.

66. Constrained motion. On account of its fundamental prac-
tical importance, we shall assume the constant field to be the gravi-
tational field. If a particle falls along any smooth path under the
action of gravity, we find the acquired velocity as usual by using
the energy equation.

If v, and v are the velocities at 4 and B, respectlvely, the
change in kinetic energy is

3 me? — L mogl
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By Art. 52 the work done equals the force times the total dis-

lacement in t h , that is, equals mg(y, — ¥),
since the acting force is weight. Hence
we have

mg(Yo—.y) = } mv® — } mvl,
from which we find

@ =290y —9) + v o x
If we set y, — y = height fallen = &, then (1) becomes
QD) v =2gh + vl

The final velocity, therefore, depends upon the initial velocity
and the height fallen, and is independent of the path. If v, =0,
that is, if the body falls from rest, then

@ ¥ =2gh or v = V2gh.

This expression, V2 gh, is called the speed due to a fall through
the height h.

The time of falling down any smooth curve is, however, not
the same for all curves. Examples appear below.

The intrinsic force equations are useful, and are readily
written down, since the particle is acted upon by two forces only,
weight and the normal pressure P, of the curve. Hence

dis dv

. mog=my o= tangential component of weight,
m '—’I-;- = P, + normal component of weight.

67. Inclined plane. A particle constrained to move along a
straight line oblique to the vertical is said to move along an in-
clined plane. The angle between the in-
clined plane and a horizontal plane is called

» the inclination.

Smooth plane. The forces acting on the
particle are weight and the pressure of the
plane. Their resultant & must act along the plane. Taking the
positive direction upwards along the inclined plane, we have
from the figure

@ = — mg sin o, P, = mg cos a.
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The particle therefore has an acceleration down the plane equal
to g sin . Consequently formulas (I) and (II) apply by setting

@ = —gsina

tys~ Rough plane. When a particle slides along a rough curve, the
tangential component P, of the pressure of the path is called
sliding friction. The following laws characterize this force :

1. The direction of friction is opposite to the direction of
motion.

2. The magnitude of friction in any problem is directly pro-
portional to the magnitude of the normal pressure.

From the second law we have

Friotion = P, = p P,

where u is a constant called the coefficient of friction.
Hence in the case of an inclined plane,

Friction = u P, = p- mg cos a.

Since friction is always opposed to the motion, for the result-
ant acceleration the formulas obviously are

S =— g (sin @ + pcos a), when the particle is moving up
@ the plane.
S=—g (8in « — pcos &), when the particle is moving
a3 ) own the plane.
= —9 P\ (»««&ca-)\dﬂ Kas)

In either case the acceleration is constant and (I) and (II)
apply.

The expressions (8) are made more compact by introducing

the angle of friction. This is defined as an angle A whose tangent

is the coefficient of friction; that is,

@ pu = tan A.
To see the significance of A, consider
X\ a particle at rest upon a rough plane. If
\\" now the plane be tipped so that the in-

clination increases, the particle will even-
tually move. The inclination when the particle is on the point of
moving equals the angle of friction. For at this instant the re-
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sistance of the friction equals the component of weight down the
plane; that is,

®
Substituting x = tan A in (8) gives

{mysina=pmgcosa; or
tanae = u. ..a=A.

f =—gsecAsin (« + A), when the particle is moving
) up the plane.
S =—gsecAsin (¢« — \), when the particle is moving
down the plane.

The numerical value of the coefficient of friction depends upon
the character of the substances in contact, and is determined by
experiment. The value of u is slightly less when the particle is in
motion than when it is at rest but on the point of moving,

ILLUSTRATIVE EXAMPLES

1. A particle is projected up an inclined plane with the velocity vo. How far
will it ascend ?
BSolution. 8ince the motion is resisted by a constant force, we have, by the

energy equation, } mve® = mfs, where s is the distance required. .- s =;—°’,
where /= g sin a or g (sin @ + x cos &) according as the o s

plane is smooth or rough.
2. A heavy particle starts from rest at the top of an /

inclined plane. Required the locus of the foot of the

plane if the time of descent is constant and independent y H’
of the inclination. e l‘“\ Y )
Solution. Smooth Plane. By (I), A ,t':_ _'Q{!"..
- =
s=}gsinast=}glsina. AN &//‘ ,
0 H ‘{ "\m‘ -

In this equation s and @ are

>
D . -
variable. If O is the starting point, it is easily seen that{ - i, pu %

the required lecus is a circle having O as the highest point ‘J c ﬁ'- MmN
g and a diameter OH =} g8 For s = 0Q = OH sin OHQM.L—_ .
= OHsina=}gAsina. The result may also be stated 4, O3
Q thus: The time of descent along all smooth chords of L ~ % C
a vertical circle drawn from its highest point is the ’(7"

same.
Rough Plane. In this case from (I) and (6) Art. 67,
s =} gsecAsin (¢ — \)B = } gf3sec Asin (¢ — \).

As before, let the vertical line OH = } gt3. Lay off the angle HOD =\, and
construct the arc of a circle whose center lies on OD passing through O and H.
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This arc is the required locus when the particle descends to the left of OH. For
OD = OHsec\ = § gfisec \. AlsQ

8=0Q = OD *sin ODQ = ODsin (« — \) = § gt* sec Asin (& — A).

If the particle moves to the right, the locus is a
corresponding equal are.

Line of quickest descent from a point to a given
curve. Given a curve C and a point 0. If a vertical
8 circle tangent to C and having O for the upper ex-
tremity of a vertical diameter is drawn, then 0@ is a
li\ne of quickest descent along all smooth straight lines
from O to C. For along OS the time is greater than
down OQ, since the time along OP equals that
C along 0Q.

PROBLEMS

1. A smooth plane has an inclination of 80°, With what velocity must a par-
ticle be projected up the plane, the length of which is 48.8 ft., that it may just reach
the top ? What must be the initial velocity to reach the top in 1 8ec.? (g =82.2.)

Ans. vy =16.1V8 ft. per second;
v, = 53.86 ft. per second.

2. A particle falls from rest down a given inclined plane. Compare the times

of descending the first and second halves. Ans. 1:vVZ2—1.

3. Along what chord of a circle must a particle fall in order to gain half the
velocity which it acquires in falling through the vertical diameter ?
Ans. Chord inclined 60° to vertical.
4. A particle is projected up a smooth plane which has an inclination of 3 in 5
with a velocity of 40 ft. per second. In what time will it come to rest and how far
up the plane will it go ? Ans. 3§ sec.; 132 ft.
5. A weight of 10 1b. falls vertically and draws & 15-1b. weight up a smooth
plane having an inclination of 80°. What is the acceleration, pull on the string,
and space fallen through in 10 sec.? Ans. f=¢59: T=91b.; space = bg.
6. A railway train is runuing at the rate of 80 mi. per hour up a grade of
1in 60. The coupling breaks, cutting loose part of the train. How long will the
detached part continue up the grade, friction being neglected ? What is its position
with respect to the point where the break occurred and what is the direction and
velocity of its motion after 2 minutes? Apg. ‘qn sec.; 144 ft. per second downhill.

7. With what velocity must a particle be projected down an inclined plane of
length 7 so that the time of descent shall be the same as that for a free fall through

the height of the plane ? Ans. v, = yl -k _siﬂ @
V2 gh
8. What is the value of g if a given mass descending vertically draws an equal
mass up an incline of 30° a distance of 25 ft. in 2.5 sec.? Ans. g =82.

9. Find the position of a point on the circumference of a circle such that the
time of descent from it to the center shall be the same as the time of deacent from it
to the lowest point of the circle.
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10. A particle slides down a smooth plane inclined at an angle of 456° and then
drops into freespace. (1) If the particle has a velocity of 20 ft. per second when it
leaves the plane, find the equation of its path. (2) Where will it strike a horizontal
plane 100 ft. below? (8) What are the axial components of the velocity when
it strikes this plane? (4) At what point will it cut a vertical line 45 ft. distant
from the plane ? - 3

TOm MO PAIC T gns. (8) 0.= 10V, vy = 10 V2 + *l?; (4) 207 ft. below.

11. A train of 100 T. starts on an up grade of 1 in 50 with a speed of 20 mi.
per hour. It is stopped by gravity and the resistance of the brakes in 4 seconds.
(1) What is the coefficient u of the resisting forces? (2) What is the velocity at

the end of one second ? Ans. (1) p=.21
12. Show that the times of descent down all radii of curvature of the cycloid
are 1. 8a
e Ans. T =24/,
g

13. A heavy particle starts from rest at the top of an inclined plane. Re-
quired the locus of the foot of the plane if the speed at the foot is constant and
independent of the inclination. Ans. A straight line.

14. Give a construction for finding the line of quickest descent from a fixed
point to a circle in the same vertical plane.

15. A body begins to slide down an inclined plane from the top, and at the
same instant another body is projected upwards from the foot of the plane with
such a velocity that the bodies meet in the middle of the plane. Find the velocity
of projection and determine the velocity of each body when they meet.

Ans. V2gh; 0, and V2 gh, where h = vertical height of the plane.

18. A parabola is placed with itsexis vertical and vertex upwards. Find the
chord of quickest descent from the focus to the curve.

Ans. The chord makes an angle of 60° with the vertical.

17. Through what chord of a vertical circle drawn from the bottom of the

1
vertical diameter must a body descend so as to acquire a velocity equal to » th part
of the velocity acquired in falling down the vertical diameter ?

Ans. If 6 denote the angle between the required chord and the vertical diam-
eter, cos § = :-' .

18. A heavy particle is projected up a smooth inclined plane with a velocity of
36 ft. per second. The inclination of the plane is 30° and its vertical height is 20 ft.
It projects into space at the top of the plane. Determine (@) the time in ascend-
ing the plane, (b) the velocity at the top, (¢) the equations of the free path.

19. A body is projected up a rough inclined plane with the velocity which
would be acquired in falling freely through 12 ft., and just reaches the top of the
plane. If the inclination of the plane is 60° and the angle of friction is 80°, find
the height of the plane, Ans. 9 ft.

20. A body is projected up a rough inclined plane with the velocity 2g. If the
inclination of the plane is 30° and the angle of friction is 16°, find the distance
along the plane which the body will move. Ans. g(V3+1)ft.
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21. A body is projected up a rough inclined plane, inclination a, and the angle
of friction is A. If m be the time of ascending and n the time of descending, show
that m sin (@ — \)

( ) sin (¢ + 1)’

22. A particle descends an inclined plane, If the upper portion be smooth and
the lower rough, coefficient of friction being x, and if the smooth length be to the
rough length as p : ¢, show that the particle will just come to rest at the foot of the

plane if u =?%q tan &, where « is the inclination of the plane.

23. Two rough planes, coefficient of friction = x, inclined respectively at angles
« and « to the horizon, are placed back to back as shown in the figure. Two
masses, m and m', are placed upon them, being con-
nected by a string passing over a pulley at 0. (a) If
m =m/, find the limit of the difference & — «', if the
acceleration is zero. (b) If @ =/, find the limit
of the difference m — m/ if the acceleration is zero.

24. Particles are sliding down a number of wires which meet in a point, all
baving started from rest simultaneously at this point. Prove that at any instant
their velocities are in the same ratio as the distances they have traversed.

68. Motion on a smooth circle. Simple pendulum?'ﬁz heavy
particle is suspended from a fixed point O by an inextensible
thread, and swings under the action
of its weight in a vertical circle. 0\
Discuss the motion, neglecting tha
weight of the thread and the in-
fluence of the atmosphere.

Let I = length of thread,

A be the initial position
(t = 0) at rest,

P be the position after time ¢,
8 =arc AP.

Then, from the figure,
(¢)) =l(a — ).
Resolving the impressed force mg into tangential and normal

components, wave tlia,lntw31c force (equ ﬁons 7/“ 17 [,7 & ,3_\5)

[¢)) m:—: , = mg sin 6,
A normal 1
8) ™ = limpressed} + {norma } = —mgcosf— T,
force pressure
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where T' = tension in the thread, that is, the pull of the particle on
the thread.
The work done by weight when the particle descends from A4

to Pis mg - MN =mgl(cos 6 — cose).
Hence, the energy equation gives
€)) 3 v? = gl(cos 6 — cos ).

The tension in the thread at any instant is given by eliminating
v? from (3) and (4), that is,

) T=mg(2cosa— 3cosb).

The circumstances of the motion are known if 8 is known as 8
function of the time.

From (2) % = gsin 6,
Po_ 20
and from (1) e ldt’
Hence, the differential equation for the determination of 8 is
P9 L I6in6=0
(6) o + 7eind=0.

Small amplitudes. The angle «, which is the maximum value
of 6, is called the amplitude of the motion. A simple solution of
(6) results if @ and consequently 6 are small. A close approxi-
mation is then found by assuming sin § = . Equation (6) then
becomes

La Ny I
) mat l0 =0.
The general solution of (7) is (see 71, Chap. XIV)
® 0=c, cos\/\;-’ t+ ¢g8in \,’%t.

The constants of integration ¢, and ¢, are to be determined by

the initial conditions.

dé
=0, 0= —= 0.
When t=0 a, 7 0

Hence, ¢; = &, and ¢; = 0, and (8) becomes

® 0= ‘azcos\/*lE t
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From (9), the motion is periodic, the time for a complete oscil-
lation being

(VD P= 21:\/5.

For any given position on the earth’s surface g is a constant.
Hence (VI) shows that the period depends only upon the length of
the pendulum. It must be remembered that this formula holds
only when the amplitude is so small that the substitution of the
angle for its sine is within the limit of error.

Any amplitude. To obtain an expression for the period which
is valid for any value of the amplitude, we proceed as follows.

. Multiplying equation (6) by g_f" we may integrate each term, ob-

taining

1/d6Y! _ 9050 =
2(‘“> lcoso e

Since -Z—f= O when 0 =q,¢c= — \lgoos «, and we may write the

equation in the form
6 )a =29 -
(dt =2 7 (cos 8 — cos ).

It is convenient to set in this equation cos § =1 — 2sin2} 6,
cos = 1—2sin?}«. Extracting the square root of both sides,
and taking the negative sign with the radical, since @ decreases
as ¢ increases, we obtain

do
== 2\/~‘lZ Vsin?} a— sin?} 4.

The time required for the particle to move from the highest

point (6 =a) to the lowest (§ = 0), which is one fourth the period,
is obtained by integration, namely,

1 1 /7./'0 dé
IP=—24/ .
1 2\9 A Vsin?} « —sin3} @

or

[ dé
10 =924/=
(% o \/.;[ Vsin? j« — sin?} 0
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The integral in (10) is transformed into a known form by
setting . . .
sinfa=~k, sin}f=~sing,
where ¢ is the new variable. Differentiating, we get
4 cos 4 6d0 = k cos pd.

40 = 2kcospddp _ _2kcospdd
cos } 0 V1 - sin?$

Since if =0, ¢=0; 0 =¢a, ¢ = -"-;, we obtain for (10) the form

i a L
an P_4\/;; \/1__;‘;_;“_2; (k=sin} )
[}

The integral involved here is known as the complete elliptic
integral of the first species and is denoted by K. The integral
evidently is not independent of «. Indicating this dependence
by a subscript, then

(12) P =4 K\/f-].

Values of K may be found tabulated (p. 117) in Peirce’s A
Short Table of Integrals (Ginn and Company).

A few values of K are set down here in order to make clear
the dependence of the exact period P, upon the amplitudes.
Comparing (12) and (VI), we have

P _im P.,—P_ K-—}m « K
@ 5= 75 ~"x
: . . 0° | 4w
Remembering that P is an approximate o0
value of the period for small amplitudes, (13) = 1.5709
gives the percentage of error. For example, 4° | 1.5718
when « = 10° this is 6° | 1.56719
1.5788 —1.5708 _ 30 8° | 1.5727
= = t 1.

1.5138 Torgs oot dof 1% | | ks

An approximate form of P, closer than
the value of P is found by writing (11) in the form

4l (1 msiney?
14 P._4\/g jo‘ (1 — B sin .¢) d$.
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Using the Binomial Theorem (1, Chap. XIVY) then

(1 —Ksin?¢) =1+ } Bsindp — ete.
Substituting and integratihg gives

P,=4 \/;l (E + % k3 4 terms in &4, ebc.),

2
. N D S : ,
Since £ =sin Ze=-a— —+ ..., if we neglect all powers of «
2 2 48
higher than the second, we obtain
l &
(15) P.=2 7\/; (1 + 1“(:) =P (1+ 1_;).

This formula is useful in practice. P, may be observed and
the value of P then determined.

69. Motion on a smooth cycloid. The discussion of Art. 68
demonstrates that the period of oscillation of a heavy particle on
a vertical circle depends upon
the amplitude. The question
[ arises : Does any curve exist upon
(A which the period of the oscilla-
tions is the same for all ampli-

a V:P % .
I L tudes? The cycloid possesses
% .~ this property, as will now be
shown.
The equation of the cycloid of the figure is (Calculus, p. 281),
(¢)) Z=aarc vers 'z-+\/2ay—y§.

We shall show that the time of descent to the lowest point O
from rest at A is the same for all positions of A.
The velocity at P is found by the energy equation to be

@ P=204-y) o =I5 vy,
if s is measured from the lowest point. Hence the time from A4

to O is given by
1 )

3 = —— % .
® Ves e Vyiss
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We must now express 8 in terms of y. To do this, differentiate
(1), which gives

de_ _2a—y _.[Za—y

3y~ Vewy -
@) - ds =(1 +(g§)1>idy = %’ dy.

Equation (8) now becomes, by substitution,

() t=—d§ =1r\/-

¥ \/ Yy — Y g
This result depends only upon the height of the cycloid and is
therefore the same for all positions of 4.
A second demonstration is important. Differentiating (2)
with respect to 8, we obtain

() 29 7 =-2 gl
Hence by the intrinsic force equations,
——gW.
fi=—g ds

Let 8 be measured from the position of equilibrium O. Then we
have, from (4),

) a=0P_f"/2"d —2vZay. .. P=8ay.

Differentiating this, we obtain dy 2.
ds 4a

Hence from (6), we have,

- ds g
® atia'=?

The general solution is (see 71, Chap. XIV)
1_[g . 1_[g
8=c¢,CO8 é\/; t+ ¢g81n é\/gt .

The motion is therefore a harmoniec curvilinear oscillation about
O with the period 47\/;——'-

Conversely, it may be shown that the cycloid is the path of a
heavy particle which performs oscillations of equal periods on a
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smooth curve. The oscillations are said to be tautochronous
(equal times) and the cycloid is the only tautochronous curve
when the impressed force is gravity.

70.. Seconds pendulum. If the period of a simple pendulum
for small amplitudes at a given locality on the earth’s surface
is two seconds, the pendulum is called a seconds pendulum for
that place. Since g varies along the earth’s surface, the length of
such a pendulum is necessarily variable, but is about 89.11 inches.

For points without the earth, gravity varies inversely as the
square of the distance from the earth’s center. Hence if ¢’ is the
intensity of gravity at a height 2 above the earth’s surface, we
shall have

) %’=L2, or g = I _

where R = radius of the earth. Hence if P, denotes the period at
the height z, then

@ P,= 2-”\/;= 27\/3(3; z) =P<1+%).

This formula gives the relation between the periods of the
same pendulum at the earth’s surface and at any height z.

For points in the interior of the earth, gravity varies directly
as the distance from the earth’s center. Hence, if ¢’ is the in-
tensity of gravity at the distance y below the surface of the earth,
we shall have

() g = R_;t_a g

PROBLEMS

1. If 89.11 in. be taken as the length of a seconds pendulum, that is, a
pendulum which makes one full swing in one second, what is the length of the
pendulum which vibrates 26 times per minute ? whose period is § « ?

2. In what time will a pendulum vibrate whose length is double that of a
seconds pendulum ?

3. A pendulum which beats seconds in London requires to be shortened by
one thousandth of its length if it is to keep time in New York. Compare the values
of gravity at London and New York.

4. What is the length of the seconds pendulum where g = 980 cm. per sec-
ond per second ?
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5. Prove that a seconds pendulum if brought to the height £ mi. will lose
about 22 z sec. per day, the radius of the earth being taken as 4000 mi.

. 6. Find the height at which a pendulum 60 cm. long will beat seconds, taking
the radius of the earth as 4000 mi.

7. The mass of a pendulum bob is 100 gm., and the string is 1 m. long.
What is the kinetic energy when the string makes an angle of 30° with the vertical
if the bob is dropped from a horizontal position ? Ans. 8.5(10)8 ergs.

8. A body whose mass is 1 lb. is suspended from a fixed point by a string 12
ft. long. The string is swung to a position 60° from the vertical and the body re-
leased. Determine the velocity when the body is in its lowest position ; also when
2 ft. above its lowest position.

9. A clock gains 8 min. per day. How much should the bob be screwed up
or down ? Ans. Down by g}y of its length.

10. Find the time, to four decimal places, of a half vibration of a pendulum
1 m. long at a place where g = 980.8 cm. per second per second.

11. The seconds pendulum loses 12 sec. per day when carried to 8 mountain top.
How bhigh is the mountain ? Ans. About 2900 ft.

18. Find the time of vibration of a seconds pendulum placed in a mine 1.6
mi. deep.

13. Compare g at two places where the rates of the same pendulum differ by
b vibrations per hour.

14. A string r ft. long has a mass m attached to the lower end and acts as a
simple pendulum. Find the point in the arc where the pull on the string is the
same a8 where the pendulum is at rest.

Ans. y = § h, where A is the height from which the pendulum has fallen.

15. A heavy particle oscillates in a complete cycloid from cusp to cusp.
Prove the following properties :

(1) The velocity at any point P “A
equals the velocity at the lowest point
resolved along the tangent at P.

(2) The time of description of any

arc OP is proportional to the angle _;, P

0AQ=7. Infactr = ;la-d. X

(3) If the particle is regarded as rigidly attached to the generating circle, then
the center of the latter moves with constant speed.

(4) The pressure on the curve equals twice the normal component of weight.

(5) The acceleration of the particle is equal to g and is directed towards the
center of the generating circle.

Hint. Use the equations z = a(6 + sin 8), y = a(1 — cos §), the properties in-
dicated in the figure, and the relation R =2 AQ (R = radius of curvature).

16. In the motion of a particle down a cycloid, prove that the vertical velocity
is greatest when it has completed half its vertical descent.
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17. When a particle falls from the highest to the lowest point of a cycloid,
show that when it has described half of the path, § of the time has elapsed and it
has passed through § of the vertical distance.

18. The bob of a pendulum which is hung close to the face of a vertical cliff is
attracted by the cliff with a force which would produce an acceleration f in the bob.

Sbow that the time of a complete oscillation is 2 » ./ L
PRy
the pendulum, and find the center of the arc described by the bob.

19. A railway train is moving uniformly along a curve at the rate of 60 mi. per
hour, and in one of the carriages a pendulum, which would ordinarily beat seconds,
is observed to oscillate 121 times in 2 min. Show that the radius of the curve is
very nearly a quarter of a mile.

, where { is the length of




CHAPTER VII
CENTRAL FORCES

71. Central field of force. A field of force is called a central
field if the direction of the acceleration at every point of the field
passes through a fixed point called the center of force. The accel-
eration may be directed towards the center of force or from it; that
is, the force may be attractive or repulsive. The magnitude of
the acceleration may vary according to any given law. In the
general case it may depend upon the direction and the distance
from the center and also upon the time. In many practical prob-
lems, however, the magnitude of the acceleration depends only
upon the distance from the center, and we shall confine our atten-
tion to this case. The term central force, therefore, as used here
applies to central fields in which the magnitude of the force de-
pends only upon the distance from the center of force. Let the
origin of coordinates O be taken at the center of force and P be
the position of a material particle subject to the force of the field.
Denote the distance OP, which is called the radius vector, by p.
Then the magnitude of the acceleration exerted upon the particle
at P is a function of p,

J=¢(p),

and its direction is along the line OP, in the positive sense if
the force is repulsive, and in the negative sense if the force is
attractive.

The path of the particle is called the ordit. If the initial
velocity is along the line OP, the orbit is a straight line, since
the force has no component tending to draw the particle out of
the line. If the direction of the initial velocity is oblique to the
line OP, the orbit is a plane curve, since the force has no com-
ponent tending to draw the particle out of the plane determined
by the direction of the initial velocity and the line OP. The
orbit is, then, necessarily a plane curve.

168
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Since the acceleration is directed towards the concave side of
the path we may draw the conclusions: (1) if the orbit is con-
cave towards the center of force, then the force is attractive; (2)
if the force is attractive, the orbit is concave towards the center of
force.

72. Areal velocity.  When a point moves along a curve, its

radius vector is said to generate area. Thus, if the moving point

describes the curve ¢ in the figure from the

B point A to the point B, its radius vector gen-

3 erates the area AOB. The time-rate at which

the radius vector generates area, that is, the

derivative of the area with respect to the time,

is called the areal velocity of the moving

point. By Calculus, p. 877, the differential of area in polar coor-
dinates is

A
X

dA = } pd.

Hence the areal velocity is given in terms of the angular velocity
by the relation
d4 _1.d0_1

M a2 at é”%

To derive an expression for the areal velocity in terms of the
rectangular components of velocity, we proceed as follows. The
rectangular and polar codrdinates of a point are connected by
the relations

z = p cos b,
) { y=psin 6.

Differentiating with respect to ¢,

dz_do 00— »ein 6%
7 = dt cos 6 psmﬁdt,
® idl:—£sin0+ cosﬂ‘ﬁ
Ldt d P dt’

Multiplying the first of equations (3) by sin 8, the second by
cos 0, and subtracting, we get

_.z_ do
cos 6 sin 892 %P
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Multiplying by 3 p and taking account of (2), we have finally
4_100_ 1, '
(4) dt - 2<$ dat "/dt = 2(”’ yv:)'
This equation expresses the areal velocity in terms of the
rectangular coordinates and their derivatives with respect to the
time.

73. Law of areas for central forces. Since a central force acts
in the direction of the radius vector, its component perpendicular
to the radius vector is zero. Hence, usin% %Dlar coordinates, the
differential equations of motion, Art. 51}"0&/ a particle of mass

H
m 2 Pag) = Fo= 0

where f denotes the acceleration. The second equation gives by
integration 0
di
@ P =
where % is a constant.
Comparing (2) with (1), Art. 72, we have

dA
Hence the
THEOREM.* In the motion of a particle subject to any central

Jorce the areal velocity ts constant.

The constant A, which is twice the areal velocity, is called the
constant of areas.
Integrating equation (8) between the limits ¢ =¢, and ¢t =1,

we have A
A= §(t2 —4);

that is, the area generated in any interval of time ¢; — ¢, is pro-
portional to the length of the interval. In other words, the
radius vector sweeps over equal areas in equal intervals of time.

* Since the 1aw of variation of the force, that is, the function ', does not enter in the
derivation of (3), it is evident that this theorem and the two following theorems in this
article hold also for the general central field of force, that is, when ' may depend upon
p, 6, and ¢.
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From (2),

dé h
4 a_r,
Hence the

THEOREM. In the motion of a particle subject to any central
Jorce, the angular velocity is inversely proportional to the square of
the distance from the center of force.

The speed of the particle is

de _do 0
dt déadt’
o dé
or, substituting the value of 7 from (4),
ds_ds h
® dt dép

Let p denote the perpendicular distance from the origin to the
tangent to the orbit. Then from the figure,

%= sin ¥ = £ (Calculus, p. 98).

g%
d
£ i Hence L. = 4 .
¢ X dé  p
Substituting this value in (5), we obtain
ds_k
Hence the " p’ '

THEOREM. In the motion of a particle subject to any central
Jorce the speed is inversely proportional to the perpendicular distance
Jrom the center of force to the tangent to the orbit.

74. Converse of the theorem of areas. Suppose a particle
moves in a plane in such a manner that its radius vector generates
equal areas in equal intervals of time, that is, its areal velocity is
constant. Then dA4

i
dé
d —=2h.
an 5t
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Differentiating with respect to ¢,

But the first member of (1) is p times the component of accel-
eration perpendicular to the radius vector ((1), Art. 78). There-
fore the total acceleration is in the direction of the radius vector,
that is, the direction of the acceleration passes always through the
fixed point which is the origin of coordinates. Hence the

THEOREM. “If a particle moves tn a plane in such a manner
that its areal velocity with respect to a fized point O tn the plane ts
constant, then the particle 8 subject to the action of a central field
of force with the point O as center.

75. The energy equation. The energy equation in polar coor-
dinates is, Art. 62,

W= ﬂ(,,z — o) = o ondp+ Fopdb.
2 Por 0o

For central forces F,=0, and, under the assumption that the
magnitude of the force depends only on the distance, we may

write,
| F,=F(p)
and the energy equation becomes
@ 20— =["Feydp.
Let the function U(p) be defined by the equation,
- %;7‘ =+F,
Then —U= f * Fp.
Equation (1) may now be writ:en
@ %v’ + Up) =%vo2 + U(py)-

The function U is called the potential function ® and the value
of U for any given value of p is called the potential energy of the

* The subject of the potential function and potential energy is treated in Chapter X.
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moving particle. The kinetic energy is } m? and since the second
member of equation (2) is constant, we have the

THEOREM. The sum of the kinetic energy and potential energy
of a particle free to move in a central field of force is constant.

Equation (2) is called the vis viva equation. The constant
value of the second member depends upon the problem, that is,
upon the initial conditions. When this has been determined,
equation (2) defines »* (the square of the speed) in terms of U
which depends upon p alone. In physical problems U is a single-
valued function of p, and from (2) the speed is uniquely
determined if the distance from the origin is known. Hence the

THEOREM. In any given problem of the motion of a particle in
a central field of force, the speed depends only upon the distance
Jrom the center of force.

As examples of the application of the preceding theorem consider the following :

(1) One end of an elastic string is fixed at the ‘point O. To the other end is
att,ached a particle which moves under the action of the elasticity of the string
(neglecting the friction of the air). Motion is
begun by projecting the particle from a given point
(pos 80) With a given speed vo. These facts deter-
mine the constant value ¢ of the second member of

equation (2), namely ¢ = ""’ + U(po). Then if a

particle passes through a point A in any direction
we can determine its speed vy if we know the dis-
tance 04 =p;. Furthermore, if the particle crosses
the circle about O with radius OA at any point as R
B, C, or Din any direction, its speed is the same 4
as the speed at A4, namely v;.

(2) If a small planet or comet revolves in an
ellipse about the sun under the sun’s attraction,
which is inversely proportional to the square of the A
distance from its center, the speed of the planet
at the distance SA4 when approaching the sun is the same as the speed at the dis-
tance SA’ = SA4 when receding from the sun.

76. Circular orbits. The problem of determining the motion
of a particle in a central field of force demands the solution of
the differential equations of motion;

| T—e(%) = F&> =mr o>

n (P %)]=0

@
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Integrating the second equation we have,

@ pL=

where % is a constant of integration. Let us impose the condition
that the particle shall move around the center of force in a circle
of radius a. Then p=a and from (2), we get for the angular

velocit
¥ a0 _ i
® i

a
Substituting this value in the first of the equations (1) gives, -
. _d_’B=

since —¢ 0,

73
8 =f(a),
whence,
@ h=+V —a¥f(a).

The value of 2 thus determined is real if f(a) is negative,
that is, if the force is attractive.
By integration of (3) we obtain

h ,— (a
(5) 0=a—’t+c= -T)t+o.

Hence a particular solution of the differential equations (1) is

p=a
® {0=\,ia(“2t+c.

The constant ¢ is determined if we know the position of the
particle at any given time. For example, if § = 6, when ¢ = 0, we
ﬁnd cC= 00.

THEOREM. In an attractive central field of force a particle
may move around the center of force in a circle of given radius a.

The angular velocity o t8 constant and equal to \[———M The
speed i8 equal to aw. a

ILLusTRATIVE Exanpre. If the acceleration in a central fleld is towards the
center of force and proportional to the distance, the time of describing a circular
orbit is independent of the radius.
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Solution. The acceleration is given by
. J ==k,
where k is a constant.
Hence the angular velocity in a circular orbit of radius g is

Ka _ k.
a
The constant angular velocity = k i8 the angle (measured in radians) turned
through by the radius vector in one unit of time. Hence the time required to de-

scribe the complete circle is ?7' units. The time required for the particle to move

completely around its orbit is called the period. The period is constant and equal

2~
©to —.
k

77. Differential equation of the orbit. To find the equation of
the orbit of a particle in a central field of force we may integrate
the differential equations of motion and then eliminate ¢. An-
other method which leads to important results is to first eliminate
t, obtaining a differential equation involving p and € (or z and ),
the integration of which furnishes the equation of the orbit. In
this process it is convenient to use, instead of the radius vector

p, its reciprocal u = % Then

@ AR ¥ T ¥
But from (2), Art. 73,
1 d6
¢)) da
dp_ _pdu
Hence 7t h T

Differentiating with respect to ¢ and taking account of (2),

% _ _ i(éﬂ = — pPudl_ _ o adle
@ as hdt de th’ dt i ae

Substituting the value of %:eﬂ from (8) and the value of %f-

from (2) in the first of the differential equations of motion [(1),
Art. 76], we have

YW 2 YT (l)
m[ na uhu] 7(2).
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Or
du _F
2 e
@ e (T u)= - £
Equation (4) is important for the solution of two problems:
(1) Given the orbit, to determine the law of central force.
(2) Given the law of central force, to determine the orbit.
The solution of the first problem is usually quite simple. From
the equation of the orbit we know u in terms of 6, u = ¢(8).
Hence we may compute the first member of (4),

® Bg(0)[$"(0) + $()] = — =

Under the assumption that the law of force shall depend only
on the distance, we may find @ from the equation of the orbit and
substitute its value in (5), obtaining ¥ in terms of p and the con-
stant of areas A. If A is known, the force is uniquely determined.

One exceptional case must be mentioned. The process fails if

the orbit is a circle a(bout the center of force. If u = 1 and % is

given, equation (4) furnishes a value for the intensity of the force
at the distance a from the center, but does not prescribe a law
governing the intensity of the force at any other distance. It
was shown in the preceding article that a circular orbit about the
center is possible for any attractive central force.

ILLusTrRATIVE ExampLe. Determine the law of central force if the orbit is the
circle p =2 a cos 4.
Solution. u = =1= g—’
p 2a
d_u_ __sec @ tan 0
de 2a
Py sec’0+sec0tan’0 seco(Qsec’o—l)
ae = 2a 2a

Pu_ s
Hence i u(8 a%u? — 1),

Applying (4), we have
- ’i: = h2utlu(8 a%ut — 1) + u] = 8 a%h%uS,

Since u = % , the final expression for the force is

8 a*h?m
F=e——_
I
The force is attractive and proportional to the fifth power of the distance.
Hence the
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TueoreM. If « particle describes a circle under the action of a center of force
on the circumference, the force is attractive and varies inversely as the fifth power
of the distance.

PROBLEMS

1. Assuming that the planets move around the sun in circles, prove Kepler's
Harmonic Law, which states that the squares of the periods are proportional to the
cubes of the distances.

2. A particle describes a circular orbit with angular velocity w about a center

of force which is inversely proportional to the distance (F: —w)- Deter-
P

mine the radius of the circle. Ans. a=k.

w

3. A particle describes an ellipse with the center of force at one focus. Show
that the force is inversely proportional to the square of the distance.

4. A particle describes an ellipse with the center of force at its center. Show
that the force is proportional to the distance.

Suggestion. The equation of a conic section with center at the origin is
=0 =_m(1—e)
P = T dcmy TR F= FY R
For an ellipse 1 — ¢2> 0 and the force is attractive.
For an hyperbola 1 — ¢2< 0 and the force is repulsive.

5. The orbit is an hyperbola with the center of force at the right-hand focus.
Show that if the particle movea (a) on the right-hand branch of the curve, the force
is attractive and inversely proportional to the square of the distance; (b) on the
left-hand branch; the force is repulsive and inversely proportional to the square of
the distance.

8. Find the central force under which a particle may describe the orbit given.

(@) the reciprocal spiral pf=a. ' Ans. F== ”:h’.
P

(b) the logarithmic spiral p = e, Ans. F= :ﬂ"_’fg’_+2

(¢) the lituus % = a?. 4ns. F = —mht (;1._ I%)'

(d) the lemniscate p? = a2 cos 2 6. Ans. F=— %?—‘L"

(e) the cardioid p = a(1 + cos 6). Ans. F=— 3‘:_’:’"'

(/) the limagon p=b — acos 6. Ans. F=—mh’(2—(“—’;—b’2+%).
(g) the four-leaved rose'p=a co826. Ans. F=—mh? (Sp._q’ - %)

(h) the three-leaved rose p=acos86. Ans. F= —mh’(l;f—%)-

(f) the rose p = a cos nb. Ans. F=—mh’(2';:“a— ”2;1 )
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7. Find the law of central force under which a particle may describe the curve

whose equation is
PA=acoskd+b,

where a, b, and k are constants.

Ans. F=— mhs((k-l-l)&:: b’) b(:«':?))

The curve in problem 7 includes many of the common curves as special cases.

For example,
when & = — 1, a conic with origin at the focus;

when k¥ = — 2, a conic with origin at the center;
when & =1, b 0, the limagon ;

when k=1, b=0, a circle;

when k = 2, b =0, the lemniscate.

78. Determination of the orbit when the law of force is known.
When the law of the force is known as a function of the distance p,
we may determine the orbit by the integration of equation (4),
Art. T7. The differential equation is linear and of the second
order. The general solution will contain two arbitrary constants.
In general the form of the orbit depends upon the constants of
integration, which depend upon the initial conditions of the
motion. The method of integration of the differential equation of
the orbit depends upon the form of the function ¥, that is, upon
the law of force. We shall consider in detail the case of an
attractive force inversely proportional to the square of the distance.

In this case F= —©™ = _ JAmutand the differential equation

of the orbit becomes
3 _:i’u )._— —_‘l = k3u3
h* ( 7 +u k3,

whence g’—u+u kz

ae
This is a well-known differential equation of which the solution
(74, Chap. XIV) is
k2

u=—e cos(t9+c,)+-h—2
Hence
i
1 2
—e¢,co8 (0 +¢p) 1 chos @+ c,)

@ P=x
hﬂ
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Equation (1) is the equation of a conic section with focus at the
origin.* The principal axis of the conic makes an angle — ¢; with

2
the axis of coordinates. The eccentricity is e = cllh?z' The distance

r from the focus to the directrix is given by the relation ep = g:
whence p = 1,
a
THEOREM. The orbit of a particle subject to an attractive central
Jorce varying inversely as the square of the distance i8 a conic section
with focus at the center of force.

The special case of the circular orbit is obtained when we

select ¢; = 0. The radius of the circle is Z—:-

To determine the type of the orbit, we must find e in terms of

the initial distance and the initial speed. Since F = — %, the
energy equation (Art. 75) gives

2er-oh = [~ E2ap.

n P
A 2B _ o 28

.__—=vo —

P Po

from which the result is derived that v? —27“ has a constant value

Jor any particular orbit.
Taking for the equation of the orbit

Hence

@

’

P=1—emﬁ’
we find, by differentiation,

dp___ épsind df_ gsmﬁdﬂ

dt~  (1—ecosf)yidt P Esm 6,
(smce p’—— h)

® The standard form of the equation of a conic section with focus at the origin is
(Analytic Geometry, p. 173)
’ p=—0>=P .
1—ecosé
This equation takes the form (1) if the polar axis is rotated through an angle cs.
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N
=1’f7: gin? 8 +§
B

Since the first member of this equation is constant and inde-
pendent of p, we must determine A so that B_ k3 = 0, that is,
e

k3 = epk3. The above equation now becomes
2K _ 12

®) ol — ) =— (e’ 1).
For the three types of comcs, (8) gives:
parabola e=1, ... ¥= 2Tk’
ellipse e<1, a = semi-major axis = l—iLea,
o=mp(2-1)
a

hyperbola e>1, a = semi-transverse axis, = e-’ii’
va=k=(2+l).
p a
From these results we see that at a given distance p from the cen-
ter of force the speed in an elliptic orbit is less than the speed in a
parabolic orbit. Also in an hyperbolic orbit the speed is greater
than in a parabolic orbit. When e =1, then, by (2) and (8), if
vy, = 0, then p, = 0 and v¥*= 2—:—2, that is, the speed in a parabolic
orbit is the speed which would be acquired by a particle starting

from rest at an infinite distance, or, briefly, the speed from in-
finity. Hence the

THEOREM. The path of a free particle in an attractive central
Jield of force varying inversely as the square of the distance is an
ellipse, parabola, or hyperbola according as the initial speed is less
than, equal to, or greater than the speed from infinity.
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79. Position in the orbit. If the orbit of a particle is given
or has been determined, it remains to determine the position of
the particle in the orbit at any instant. Let the equation of the
orbit be p=/£(6). From the law of areas,

0
M P =
whence
@ [ =F@) = e+

This equation determines the vectorial angle in terms of the

time. Solving for 6,
0 = ¢(t).

If the position at any instant is known, the constant of inte-
gration may be determined and the position at any other instant
may be found.

Since @ is known as a function of ¢, this value may be sub-
stituted in the equation of the orbit and p will be expressed in
terms of ¢: p=+Y(t). We may now find the speed at any
instant from the energy equation, or from the third theorem of
Art. 78.

The time 7' required to describe any given arc from 6 = 6,
to § = 6, may be found from (1) by integration. This gives

AT = h(ty — )= I * g2d8,

) or 1'=% *21d6.

This result might have been anticipated from the law of areas.
The integral in (3) is twice the area bounded by the curve and
the radii vectores § = 0, and § = 6,. The constant A is twice the
areal velocity. Hence (8) may be written

- area .
areal velocity
For example, if the orbit is an ellipse, the period, that is the
time to describe the complete curve, is

= 2mab
)
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ILLustRaTIVE ExamprLe. A particle describes a logarithmic spiral under a
center of force at the pole. Find the time of describing any arc. Determine the
coordinates and speed in terms of the time.

Solution. The equation of the curve is p = ¢*6. From (38),
1 (% 1 1
== tete0dp = ——_ (e300 — £28,) = —~_ (pod —pi12).
T g fo o0 = 5 (et — vt Zan Y

From (2), _f 2040 = ¢ + s,
whence %‘em=—p’—t+e., ‘ .
and 2 a6 =log 2 a(t + cs).

‘We may find the ipeed directly from the relation

= () ()= (G ) () = R () 3] ()

Now, -2 = ae*? = ap,
d
- (d)
Hence v’=h’( + ) a@+1 7
o a(t +c)

80. Complete solution of a problem in central motion. We
have seen (Art. 76) that the problem of determining the motion
of a particle in a central field of force demands the solution of a
system of two simultaneous differential equations each of the
second order. The complete solution must contain four con-
stants of integration. For the determination of the constants we
must have four initial conditions, for example, the two coordinates

of position py, 8, and the two components of velocity (-gf) R (i-”>
0

at the instant ¢=1¢, We must be able to express the constants
of integration in terms of the initial conditions.

GHven the law of force, and the initial conditions p=a, 6 =B,
gf =1, %—f =8, when t=0, to determine the motion completely. The
solution of the differential equations of motion (1), Art. 78, is

accomplished by three steps.

L Iﬁtegrating the second equation, we have
do _
e) P =
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I1. Integrating the differential equation of the orbit,

af Pu -_F
@ A (dm+ u)_ I
we obtain
® p=S(0; ¢ ¢,

which is the polar equation of the orbit and involves two constants
of integration.

ITII. Substituting in (1) the value of p from (8), we have, by
integration, .
@ f P30 = F(8) = ht + ¢
To determine the four constants of integration (A, ¢, ¢5 ¢3),
we impose the initial conditions.
I. From (1),
) h = a%.

II. To determine ¢, and ¢, we differentiate (8) with respect
to ¢,

) do (/

From (8) and (8"),
e=f(B; ¢ )
® {7 =f B; ¢y €3) 3.
We find ¢; and ¢; by solving the simultaneous equations (6).

III. From (4), :
0 . =F(B).

When the values of the constants of integration given by (5),
(6), and (7) are substituted in (8) and (4), we have the finite
equations of motion, by which p and @ are expressed in terms of ¢
and the given constants.

ILLusteaTivE ExanpLe. A particle is subject to an attractive central force

inversely proportional to the square of the distance (F: —%) . Determine the

motion completely if p=a, 6 =0, ‘—3: 0, %z = b, when ¢ =0. Discuss the form

of the orbit for various values of b.
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Solution. By (5) the constant of areas is A = a%h.
Hence the differential equation of the orbit is

ot (L4 )=

The polar equation of the orbit is (see (1), Art. 78)

ath?
8 = .
® 1— ciatb3cos (0 + ¢2)

Differentiating (8) with respect to ¢, we have after simplifying,
9 P _ _ crptsin (0 + c) %2
® & cwisin (8 +c2) o

Substituting the given initial values in (8) and (9), the equations for the
determination of ¢, and ¢; become

a=—0 0
10) 1— ciatb?coscy’
0 =—c;a?bsin cs.
The solution of (10) gives
cl=1_“ab’, c=0.
a‘d?

Subestituting these values in (8), the equation of the orbit becomes

_ atb?
an Ul g T ey )

To express ¢ in terms of ¢, we have, from (4),

(12) jp’do i :'Z db e =a3bt + cg,
where ¢ =1 — a®3.
Integration of (12) gives
asbt esiné 2

mtan{ 1+€¢an? }] atbt + o5
l1—e

l—e?l1—ecosd + vi—eé
Substituting the initial values of 6 and ¢, we find
cs=0.
Hence 6 is expressed in terms of ¢ by the relation®

@b [ esin g 2 M¥etan? } -
o tan 1+ €tan~ =t
1—e? 1—ecos0+\/1_e!m { 1—¢ 2 ]
Equation (11) shows that the orbit is a conic section with focus at the origin.
For various values of the initial angular velocity b, the following cases occur.

* The solution of this equation for 6 is not simple. For practical purposes it is cus-
tomary to employ infinite series. The student is referred to Moulton’s Celestial
Mechanics, Chapter V.
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Q 1 b’<%, the orbit is an ellipse @) It b’-—, the orbit is a
parabola.

(e=1 — a%?%) with the left-hand focus at the
origin.
(1)
/-Nvozf
Up X -L‘
OP=a=1, bi=m}, Vymabmj
@ o= % the orbit is a circle with cen-

ter at the origin. (2
OP=a=1, b3=2, Vy=ab=1.4.

m .I
U ) I b’>%‘ the orbit is an

180

hyperbola (e = a%h® — 1), with the
left-hand focua at the origin. -

X

l".
;
/
{
i
!
/
j
]
.
{
s
1
H
.
‘
.
a
I
\
!
\
\
\

\\
[}
[}
[}
.
.

OP=a=1, bi=1, Vy=ab=1.
®) I %< b’<%, the orbit is an ellipse
(e = a®?® — 1) with the right-hand focus at the
origin. Vo2
(3)
| P
ol
=12
] P
U x

OP=a=1, =}, Vy=ab=12. OP=a=1, b’=4, Vo=ab=2.
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PROBLEMS
. Determine the various orbits for the law of inverse cube of the distance,
= - me
, Ans. Whenk:<hﬁ-_acoa(co+p),wherecz.—_1_’£’.

h3

When &2 = A2, —=a0+p.
p

When 2 > A3, 1_ ae® 4 be-9, where c? =§; -1.
14

2. Determine the cotrdinates and the speed in terms of the time, and the time
of describing any arc when the orbit is the curve given :

(a) the reciprocal spiral p6 = a;

(b) the curve p = ae~20 4 be2? ;

(c) the lituus p%0 = a?;

(d) the lemniscate p? = a2 cos 26 ;

(e) the cardioid p = a(1 + cos 6);

(/) the limagon p=b — a cos 6;

(g) the four-leaved rose p = a cos 24

(h) the three-leaved rose p =a cos 30 ;

(¥) the rose p = a cos né.

8. When the force is F = m(p%
of the orbit described has the form

P =
where a, e, and k are constants.

+ ;'; ) show that, if » < A, the general equation

_a
1 — ¢ cos (k8)’

4. Show that (if e < 1) the curve in problem 3 may be regarded as an ellipse
whose major axis rotates about the focus with uniform angular velocity
2x(1=0)

kT’
where T is the time required for the particle to completely describe the rotating
ellipse.

n=

5. Show that in the case of a central force the motion along the radius vector

is defined by the equation .
I

=f o

8. A particle is subject to an attractive central force proportional to the

distance (F = —mp). Determine the motion completely if p =a, 6 =0, Z—: =0,

do _ _ tan 0 =btant,
a?._b, when ¢ = 0. Ans oo a2b?
~ b2 cos? 6 + sin? 6

|
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7. A particle is subject to an attractive force inversely proportional to the fifth
power of the distance. Determine the motion completely in the two cases :

(a) p=a,0=0,g—:=0,%f=al., when ¢ = 0.
®) p=a,0=0%-0%__1 ghen¢=o.

*«" % Vg
Ans. (a) 0=t p=a.
®) 2o+sxnzo=%, p=acosd.

81. Planetary motion. The law of gravitation. The astron-
omer Kepler (1671-1630) was led to formulate the following
empirical laws of planetary motion, his conclusions resulting from
the study of a great number of observations made by his prede-
cessors and himself.

1. The radius vector of each planet with respect to the sun as
origin sweeps over equal areas in equal times.

II. The ordit of each planet i3 an ellipse with the sun at'a focus.

III. The square of the period of revolution is proportional to the
cube of the major semiazis.

Upon the basis of Kepler's laws Newton proved that the plan-
ets move under the action of a force directed towards the san,
and varying inversely as the square of the distance, thus. By the
first law the theorem of areas holds, and we conclude, by Art. 74,
that the planets are subject to a central field of force with center
at the sun. There is no evidence that the intensity of the force
of the field is different for different directions, and we assume
that the law of force depends only upon the distance. From the
second law the equation of the orbit is (Analytic Geometry,

p- 173) __ e
P 1—ecosf
Therefore, since u= %,
L
d ep

and equation (4), Art. 77, for the determination of the law of force,
gives
hm

F=-—-".
@ o
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We therefore see that, assuming the force depends only on the
distance, the first two laws of Kepler lead to the conclusion that
any one planet is attracted by the sun with a force inversely
proportional to the square of the distance. 2

By means of the third law we show that the factor p is the

2 wab

same for all the planets. By Art. 79, the period 7'=

h ’
2 rab
or h= T
R _ 4 ma??
@ and -2 ep epT?
Butp = % (Analytic Geometry, p. 185), and (2) becomes
B _4n%d
ep m
Since by the third law -;—; is constant for all the planets, we
obtain for the law of force,
€)) = cﬁ’

P

where ¢ has the same value for all the planets. From (8) we may
conclude, as did Newton, that the sun exerts upon a planet a force
of attraction which is directly proportional to the mass of the
planet, and inversely proportional to the square of its distance
from the sun.

Law of universal gravitation. It is shown by observations
that laws corresponding to those of Kepler hold for the motion of
the moon around the earth, and also for the motion of every
family of satellites in the solar system. It follows, therefore,
that each satellite is subject to a central force directed towards
the primary, and varying inversely as the square of the distance.
It has been shown also in every case in which the motion of a
comet has been observed that the path is a conic section with the
sun at a focus, and that the law of areas holds. These bodies,
therefore, move under the same law of force as the planets. The
laws of Kepler and the preceding statements concerning satellites
and comets, although of immense importance, are only approxi-
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mately true. The errors are comparatively small, but easily per-
ceptible by observation, and readily explained theoretically upon
the basis of Newton’s law of wuniversal gravitation. This is:
every particle of matter in the universe attracts every other particle
with a force which acts in a line joining them, and whose intensity
18 directly proportional to the product of their masses, and inversely
proportional to the squares of the distances apart.

Observations show that the orbit of the moon about the earth
is not an exact ellipse. This is due to the fact that its motion is
influenced by the attractions of the sun and every other member
of the solar system. The orbit is approximately an ellipse be-
cause the moon is very near the earth, and the central force
directed towards the earth is much greater than all the other
forces acting. The proper computation shows that Newton’s law
accounts for the motions of all the planets and satellites in the
solar system, and not a single fact is known to dispute its truth.
By means of it and the appropriate mathematical processes, we
are able to predict the positions of the planets and satellites many

years in advance. We therefore consider its truth to
M be established as far as the solar system is concerned.

Newton’s verification that the force which holds
the moon in its orbit is the same as that which makes
an apple fall to the ground is historically important.

To work this out, we need the theorem that the attrac-

tion of the earth upon an exterior object is the same

g as if its mass were concentrated at its center. Next

we assume that the attraction of the earth for rela-

tively small masses is the same as if the latter were material par-

ticles. Consider, therefore, the attraction of the earth (a) upon

the moon; (4) upon a material particle upon its own surface.
By (8) these are

where M= mass of earth, m; = mass of moon, m = mass of par-
ticle, » = mean distance of moon, R = radius of earth, a = major
semiaxis of moon’s orbit, 7'= moon’s period, g = acceleration
due to gravity at earth’s surface.
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Comparing the values of cM in F; and F,, we get from (4)

cM= 4 Z:as = R2g,
Or,
4 73q?
® 9= T

This value of g is accordingly the condition that the law of uni-
versal gravitation shall hold for the influence of the earth upon
the moon and falling bodies at the earth’s surface. The value of
g computed from (5) is, in the C. G. S. system, 975, which com-
pares with the observed value of 981 as closely as is to be
expected under the approximate conditions assumed.



CHAPTER VIII
HARMONIC FIELD

82. Harmonic central field. We begin with the study of free
motion in a central field due to a center of force attracting directly
as the distance. That is, if O is the center
of force, then at any point P,

@ Force =mk?. OP,

where 43 is the absolute intensity of the field,
that is, the force on unit mass at unit dis-
tance.

The axial components of ¥ are

F,=Fcos(z, F)=— Fcosf, F, = Fsin(z, F)=— Fsin,

i = . =2  gsn0=-Y_.
since (z, F)=mn+0 But cosf 0P’ sin @ 0P Hence

we have
@ F,=—mkz, F,=— mky.

Consider now the question of the path of a free particle pro-
jected with any velocity into such a field. It is obvious that the
path is a straight line if the initial velocity is along a line of force.
In the general case, however, the path is curvilinear, and we can
at least foresee that it must be everywhere concave towards the center
of force, since the force causing the motion has that direction.
The general statement is contained in the

THEOREM. The path of a free particle in a harmonic central
field is elliptic if it i8 projected with a velocity oblique to the lines of
JSorce.

Proof. The force equations in rectangular cordinates reduce
by (2) to
dz

¥z 4 =0, T4 py=
C) qa tFe=0 —2+ky=0.

186
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Each equation is harmonic (71, Chap. XIV), and the solutions
may be written
(C)) z=rc, sinkt +c;con kt, y = cgsin kt+ ¢, cos kt,
in which ¢,, ¢;, ¢5 ¢, are constants of integration. The rectangu-
"lar equation of the path is obtained from (4) by eliminating ¢.
We may, however, simplify the problem if we draw the axis of z
through the initial position. Then if ¢=0, we have y =0, and
hence ¢,=0. We must now eliminate ¢ from

®) z=c,sinkt + c;cos kt, y= cgsinkt.
This is readily done by solving the second equation for sin k¢ and

substituting in the first. The result is, after reduction, found
to be -

(6) cg's*— 2 ciezy + (e + DY = cyleqy
which is the equation of a central conic with
center at the origin. But since this conic
must be everywhere concave towards the cen-
ter O, the locus must be an ellipse. Q.E.D.

Since the rectangular component motions (4) are both periodic
with the same period 2w + %, the particle completely describes
the ellipse in the time 27 + &, and we have the important

THEOREM. A free particle projected in a central harmonic field
in any direction will describe a periodic orbit whose period depends
only upon the absolute intensity of the field.

ILLusTRATIVE ExAMPLE. An elastic string AB is fastened at 4 and the other
extremity is pulled through a ring at B and attached to a heavy particle. The latter
is at rest in the position C. If the particle is now displaced obliquely a small dis-

tance and then projected, determine the motion.

B, 4 Solution. Let T represent the pull of the string
when the particle is at D. Then, by Hooke’s Law
(footnote, p. 112),

(¢)) T:mg:: BD: BC,
since at C the pull and weight are equal. The result-
mg ant force R Is the vector sum of T and mg. The
T vector triangle is, however, similar to BDC by virtue
D of the proportion (1) and the equality of the angle
B at B to that between T and mg. Hence R acts
towards C and is proportional to DC. That is, the
particle moves as if attracted towards C with a force proportional to the distance.
The particle therefore describes a vertical ellipse about C as a center when pro-
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jected from D in the plane BCD in any direction oblique to CD. The period of the
motion is 2 r\ﬁ ,if BC=d. For,since R:mg:: DC: BC, we have R = 2L. 0D,
g BC

Hence, if m and CD are unity, the absolute intensity of Ris-£ or £, and this
is k2. BC d

83. Energy equation. The energy equation in rectangular
codrdinates gives, using (2), Art. 82,

3mv? -} mol= oY (— mk®zdz — m¥ydy)

Zor Yo
z,Y kﬂ
-8 x’+y’] =—m_(P’—Poz),
2 Zov Vo 2
if p = distance from center of force.
(I) oW gpi= _kﬂ(pl - Po’)'

The path (6), Art. 82, is circular, when and only when
¢;=0, ¢g=c,. The equations of motion now are, if ¢, =¢; =a,

(@) z=acos kt, y=asin kt.

Since p is now constant and equal to p,, (I) gives v = v,, that
is, the motion i8 uniform circular motion.

84. Simple harmonic motion. The path is clearly rectilinear
when the direction of the velocity of projection is along a line of
force. Let 8 be the distance from the origin at
any instant. Then F = — mk?, and the force
equation is
d’s
, (¢)) 7t k=0,
0 ¥ that is, the harmonic equation (71, Chap. XIV).
The solution, or equation of motion, may be written

@) s=acos (kt + B),

in which @ and B are arbitrary constants. The characteristics of
the motion have been discussed in example 8, p. 50.

The following terminology is in common use for simple har-
monic motion.

The attraction F is called the force of restitution, the distance
8 the displacement, and the constant 8, upon which the initial
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position (8,=acos8) depends, is named the epoch. As already
pointed out, the maximum displacement (= a) is the amplitude,
and the period of the motion is

[ 3]

(3 r=2T.
Since in any given harmonic field the period 7' is constant, we
may write in (2), k= -2—17—,', and thus obtain the equation of motion

in the standard form
an 8 =acos (2—1,*!+ﬂ)

Frequency. The reciprocal of the period is named the fre-
quency of the vibration. Obviously, the frequency gives the
number of total vibrations (integral and fractional) performed in
unit time.

Phase. The extreme position 4 is reached when2;t +8=0,

ort=— 2£ T. Let M be a subsequent position in the path at the

time ¢. Then the elapsed time from 4 to M is t+o5- B T The

. ——
A o’ M A

ratio of this interval to a complete period is called the phase; that
* B
. t
4 =— 4L
@ Phase at the time ¢ T+ e

For example, if the phase =}, the particle is at O since a
quarter period has elapsed from 4 ; if the phase =}, the position
is 4', ete.

Difference in phase. Given the simple harmonic motions with
the same period,

®) z = acos (2'” + B) = a' sin (g;th

to determine the difference in phase. We must first write the
second equation in the standard form, thus:

— ot sin (224 ) =o' con (22t 4 ).
z’—asm(T+B =a' cos T+B+2

+ B’),
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The respective phases are now (by (4))

m
T R
T 2n T 2m
J - s
Their difference is accordingly equal to 3 = :
™

that is, a constant independent of the time. This gives the result:
If two simple harmonic motions have the same period, their difference
in phase i8 constant.

ILLusTRATIVE ExampLE. A heavy particle is at rest at O on a rough horizon-
tal plane midway between two points C and C!. The extremities of an elastic string

-
— .
C [} P o’

of length less than OC are attached to C and to the particle, and a like elastic
string is attached to C’ and to the particle. The particle is now displaced a small
distance from the position O in the direction C'C’ and then released ; determine the
motion.

Solution. Let d = elongation of each string when the particle is at 0. Then
at P, if 8 = OP, the elongations are respectively d + 8, d — 8. Since the pull of
each string is proportional to the elongation, the force of restitution, towards O, is
numerically mA(d + 8) — mA(d — 8) = 2 m\s, where \ is a constant factor of propor-
tionality. This is resisted, however, by the friction umg, where u is the coefficient
of friction, The resultant force is the difference. The force of restitution must be
written — 2 m\s, since its direction is opposite to s. The friction, however, must
remain indeterminate in sign, + umg, since its direction reverses with the change
in direction of the motion. The force equation therefore gives, after division by m,

2
(1) o= —2a kg,
the plus or minus sign being used according as the direction of motion is negative
or positive.

Let the particle be displaced from O to A. Then, for motion to begin, the

force of restitution & - Am - OA must exceed the friction. That is, 2\ - 04 > ug, or

A DA"0 D A A

0OA >} ug+ N\ If then the points D and D' be marked such that OD = OD' = ‘%
the initial position must be beyond D or D'. !
Separating the two cases in (1), we have for motion in the negative direction,

‘;:‘;+2M g, rE—+2A(a—Eg-)— .
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If in this equation we write a—ﬂ 8', we obtain the harmonic equation
‘f;:: +22s'=0. Wae therefore have a harmomc oscillation whose center is 8 = ‘3‘2 or
D ; that is, on the positive side.

The solution of the problem is now clear. The effect of frictionis to pull the
center of force in ita own direction from O to D or D'. Thus, if motion begins at 4,
the particle moves to 4’, where DA’ = DA. The particle next moves to A" such
that D'A’' = D'A", etc. We note that friction reduces the amplitude each time by
DD’ or ug + A. Motion ceases when an extreme position falls within DD’, in the
figure at 4"/,

PROBLEMS
1. Integrate the following harmonic equations, under the given conditions:
(a) %+x=0; 20=2, 9o=0. Ans. x=2co8¢.
) %+4y=q;a=2,p=%. Ans. y=2co8 (2¢+} ).
(& T2482=0;a=1,p=". Ans. z=sin V3¢
an 2
@ %+n2v=0;vo=c,vo=nc-
@ g
—+4+%0=0; 6= =0.
(e) dt‘+c y o=@, wo
(In this problem,«::%i:angula.r velocity.) Ans. 0= aeos\lgt.
GAtLo=0h=0,w= o=k ain 2
U)dt’+eo_o’a° y wo = k. Ans. 0=k Eain Et.

(9) %+bz=0; a=a, =gr.
) g—:g-l—y:O; a=1v=4%
2. Show that each of the following defines a simple harmonic motion, by

writing each in the standard form (II). Find the amplitude, epoch, and period.

=s8int—2
(a) z=sin cos . Ans. a=\/5,sinﬁ=—L_,cosﬁ=——2;, T=2x.
Vb Vb

= 3 1
z=—co82t+88in2¢. Ans. a= V10,8ng8=—~———, cosf=——"—
® V10

V10’
= _r = - .
(c) 8=2sin (t 6)' Ans. 8=2cos (¢ «} )
= ¢t — 4 gin xt. Ans. a=V17, sin —, cos
(d) s =coswi sin x ns. B= T B— \/ﬁ

(e) = —Bcos(ﬂ—%’

) z=cos ft+é"-') —sin(rt—g).
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(g) z=ayco8 (kt+pB1) + ascos (k¢ + B2).
(k) y=bysin ket + bgsin (kt—x).

@ y=sint-—cost+sin(t+%’).

(J) 0= aycos (nt—B1) + o co8 (¢ + Bs). .
(k) z=aycos (kt+ B1) + azcos (kt + Bs) + ascos (kt + Bs).

10} x=-cos§:—3ain(§z+a").
(m) z=28in} xt— cos (§ vt — § 7).
i 2 2
(n) z_singrt—ﬁcos(gﬂ—-g).

Note the characteristic thing: The functions are sines or cosines and when
occurring together the coeflicient of ¢t is the same.

3. Show that
z = aj cos (kt + B1) + az cos (k¢ + Bs) + - +a.we(kt+ﬂ.)
defines a harmonic motion. What is the period ?

4. Draw the distance-time diagram for each solution of problem 1, and
discuss the figure.

5. Construct the positions of a particle having simple harmonic motion, if the
amplitude is 2, and phase equals §, §, 2, 1, 14, 11, 24, 5, §, 14.

8. An elastic string supporting a heavy particle hangs in equilibrium, the
elongation due to the weight of the particle being equal to d. The particle is now
depressed below the position of equilibrium through a distance ¢ greater than d, and
then released. Find the height to which the particle will rise after the string ceases
to be taut. Ans 2 —-d?

Y B

7. If the heavy particle in problem 6 be acted upon by an impulse sufficient to
project it downward from the position of equilibrinm with the velocity v, find the
maximum extension of the string. Ans. d + _\f o.

8. Find the velocity of the impulse in problem 7 if the string just resumes its
original length when the particle rises. Ans. Vdg.

9. What is the nature of a field of force due to two centers of equal absolute
intensity and each attracting directly as the distance ?
Ans. A harmonic central fleld of double intensity whose center is the middle
point of those given.

10. Two material particles act as centers of force attracting as the distance, the
absolute intensity of each equaling the mass of the particle. Determine the nature
of the field.

Ans. A similar fleld due to the entire mass placed at the center of mass.

11. Generalize problem 10.

12. Find the path under a repulsive center of force, the law of direct distance
still holding as in Art. 82. Ans. Hyperbola.
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13. Two heavy particles of masses m and m/, respectively, hang at rest, being
attached to the lower extremity of an elastic thread, whose upper end is fixed.
Supposing the second particle drops off, determine the subsequent motion of the
other.

Ans. If the separate particles cause elongations d and d', respectively, and if

1 =length of string, the equation of motion is z=1+d + d' cos-\ﬁt, where
% = distance of the particle from the fixed point of suspension.

85. Composition of simple harmonic motions in a given field.
Many problems in mechanics depend for their solution upon the
following simple principle.

Consider two simple harmonic motions occurring simultane-
ously on XX’ in the given field. Their equations may be written

¢)) z; = a,cos (kt + B,), z,=azcos (kt+ B,).

By composition (or addition) we derive from these the motion
whose equation is

(@) z=2z 4+ 2,=a,cos (kt + B;)+ a, cos (kt + B,).

But this motion is also simple harmonic with the same center
and period as the components (1). For the equations (1) are
solutions of the harmonic equation,

&z
®) Tt Fe=0,

and their sum is also a solution.
Hence the equation (2) must be in the form

©)) z = a cos (kt + B).
In order to find a and B, expand (2) and (4) and compare the
coefficients of cos 4t and sin k2. 'We obtain
(56) acos B=a,cos B+ a;cos By, asinfB=a,sinp,; + a,sin B,
Squaring and adding these gives
) B=al+ a?+ 2a,a,cos (B, — By).

This is the amplitude of the resultant motion. Knowing a,

then sin B and cos 8 are given by (5) and hence the'epoch can be
found.

' The preceding discussion may be generalized and gives the
result:
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The resultant of any number of simple harmonic motions on the
8ame line in a given field i also a simple harmonic motion in the
same field. :

Consider next the composition of simple harmonic motions
in a given field along lines mutually perpendicular. Let these
equations be

) z=acos (kt + B;), y=>cos (kt+ B,).

Y The resultant motion is that of the point
(=, y), and, as already proved, the motion is
in general elliptic. The path may, however,

(2.3
be rectilinear, namely, if the difference in
0 X phase is } or any multiple thereof; that
is, if
) ’—312-_—”&=%, and hence B, =mn + B,

we get in (7), by substitution,
(9) z=acos (kt+ B, +nm) = + acos (kt + By) = i‘lbl,
and the path is accordingly a straight line.
This result is important and gives the

THEOREM. Two simultaneous simple harmonic motions along
perpendicular lines in the same field compound into a simple har-
monic motion when the difference in phase 8 a multiple of one half.
Conversely, any simple harmonic motion in a given plane field
may be resolved tn two simple harmonic motions along perpendicu-
lar lines,. one of which may be chosen arbitrarily.

Consider finally the composition of simultaneous simple har-
monic motions along oblique lines LL' and XX’ in a given field.
Let P be any position resulting from
composition of the motions of M along 7] L
0X and N along OL. By the theorem, N /
the motion of N along LL' may be re- N 7 P
solved into simultaneous simple har- 4.4_
monic motions of M’ along OX and N' Lﬁ M h
along OY. But since in the figure

OM'' = OM' + OM, the simultaneous simple harmonic motions
of M and M compound into a simple harmonic motion of M.
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Hence the resultant of the motions of M along OX and NV along
OL is now compounded of simple harmonic motions along the
perpendicular lines OX and OY, and is therefore an elliptic
harmonic motion in general.

The conclusion of the whole matter may now be stated in the

THEOREM. The resultant of any number of simple harmonic
motions having the same center and period is8 either an elliptic
harmonic motion or a simple harmonic motion.

This theorem finds numerous applications in Physics in connection with elastic
media and the theory of wave motion. By Hooke’s Law, any particle of such a
medium, when the stress causing a displacement is removed, performs small oscilla-
tions under the action of a force of restitution proportional to the displacement from
& normal position, and therefore executes simple harmonic motion. The com-
position of such motions is accordingly of importance in studying the effect of simul-
taneous disturbances in such media.

PROBLEMS

1. Find the equation of the resultant of the following simultaneous motions.
In all cases determine the resultant amplitude, epoch, and the difference of phase.

(@) z =sint; 23 = cost. Ans. z=V2cos8 (¢t -} ).
(b) x1=2cost; x,:aln(t-}-'%)- Ans. z = 8cost.
() == 2cos%rt; 9= sin(%rt + g) Ans. Difference of phase = }.
(@) zy=—coswt; 2, =2s8in(xt +}r). Ans. Difference of phase = }.
(e) yr=sin}t; ys =2cos}t. Ans. Difference of phase = }.

() n=—cos(§xt+ir); ya=2sin(§xt+3r).
Ans. Difference of phase = 0.

(g) z1=acoskt; x,:acos(k¢+2?')- . Ans. z=acos (lct-i-g).

2. Find the equation of motion of the resultant of
zy=acoskt, x3=acos(kt+ 4rx), xs =acos(kt+ ¢$x). Ans. z=0.

8. Find the amplitude and epoch of the motion whose equations are

z =acos(kt+ B), y= bcos(kt+ B).
Ans. Amplitude = Va3 + 32, epoch = B.

4. What is the theorem concerning difference of phase when the resultant of
two simple harmonic motions along perpendicular lines in the same fleld is a uni-
form circular motion ?

Ans. Difference of phase must be an odd multiple of one fourth.

5. Discuss the motion defined by each of the following. Find the equation of
the path in each case, and plot the locus.
(@) z=cost; y=2sin(t + }r). Ans. 423 —2V2zxy 4 2 =2.
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(b) x=28int; y=38cost. Ans. 922 4+ 492 =236.
(6) x=sin(}xt +{x); y =—cos (}=t). Ans. 234+ V2xy +4p=1:
(d) z=coskt; y=cos(kt+ §r). Ans. B+zy+ =14

6. A heavy particle is susperded from a fixed point by a flne elastic thread
and is hanging at rest. Motion is set up by an impulse imparting a velocity » in
a vertical plane through the thread but inclined at an angle o to the latter. Deter-
mine the motion. ’

Ans. Simple harmonic, amplitude = o + ¥, where k¥ has same value as before
(Art. 82).

7. If the particle in problem 6 is not originally at rest but performing vertical
vibrations, determine the motion when the same impulse acts upon it when in any
position. Work out the equations of motion by composition.

8. Solve problem 3 by rotating the axes through the angle ¢ = tan-
show that the new equations of motion are

2' =zcos0— ysind = VaZ+ b3cos (kt + B), y' =z8in 6+ ycosd =0.

lb,and

9. A particle is projected from the point (8, 4) with a velocity v, of 30 ft. per
second in the direction given by (v, z)=4 » +sin-14. The force acting is an
attraction from the origin varying as the distance and in magnitude equaling 1 lb.
per unit mass at the distance of 2 ft. Discuss the motion.

. 209 Ans. Path is 9} 23 — 23§ 2y + 16,%; y? = 625.

10. Discuss the resultant of two simple harmonic motions on the same line in
a given field if the differance of phase is ; §; 4; 4; §-

SR
11. If the fly wheel & engine revolves with constant speed, show that the
motion of the piston is more nearly simple harmonic the greater the length of the
connecting rod.

86. Composition with different periods. Forced vibrations.
Consider again the motion of a heavy particle performing small
vertical oscillations by virtue of being suspended by an elastic
thread. Let the particle be acted upon by a periodic vertical
force, that is, a force whose magnitude and direction vary periodi-
cally. Such a force is given by

¢)) F = Fcos At = mf, cos \L.

Its maximum value is ¥, and its period is 27 + .

It is clear that the original simple vibration will be altered.
In particular, if the force varies in such a manner that its direction
always coincides with the direction of motion, the amplitude will
increase with each oscillation. The periods of the harmonic
motion and the force must in this case be equal. On the contrary,
if the periods are nearly equal, the direction of the force will
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eventually oppose the motion and reduce the amplitude. Thus
a’ great oscillation will be at first produced, then reduced, and
subsequently renewed, etc.

Mathematical verification of these observed facts is readily
made. The differential equation of motion is

s _
) -‘—i—t;+kzs—focos)»t,

since the forces are ¥ and the attraction of the field (= — mk%).
CASE 1. Periods unequal (A k). A particular integral of
(2) is without difficulty seen to be k_ﬂﬂﬁ cosAt. Hence, the
equation of motion is (see 75 (a), Chap. XIV)
= S
3 s=acos(kt+ B)+ m cos At.

This equation is obviously obtained by composition of simple
harmonic motions of different periods, namely,

{4) 8, = acos(kt + B), 8’=.Ic"_j—'°T’( 3L

oS

The first of these is the undisturbed harmopic.motion. The
second has the same period as the disturbing .orge (27 + ), and
the amplitude is

Jo
) ‘ b= v

The resultant motion (8) is, of course, an oscillation, but not
barmonic. The case is important when k and A\ are nearly equal,
that is, when the disturbing force F has a period differing slightly
from the period of the field. The amplitude b is now very large
and the oscillations of the motion (3) consequently become very
great. This result may be formulated :

If a vibrating body is acted upon by a periodic force of frequency
nearly equal to that of the undisturbed vibrations, the forced oscilla-
tions will be of great amplitude.

We have here an illustration of the principle of resonance.

The conclusion may now be drawn that a small force with the
proper period may produce remarkable effects, and an explana-
tion is arrived at of the danger to bridges from the steady march-
ing of troops, the heavy rolling of ships caused by waves of proper
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period, etc. The phenomenon of “beats” in acoustics rests upon
this principle also.

CAsE 2. Periods equal (A=1k). A particular solution of
(2) is now found to be %}}E tsin kt, and the general solution may

therefore be written in the form (see 75 (3), Chap. XIV)
® a=acos(lct+/3)+2»£°,;tsinkt.

The presence of ¢ in the second term destroys the harmonic
character of the component. It is plain, however, that this term
determines the numerical magnitude of & when ¢ is large, and
consequently it is seen that the amplitude of this vibration be-
comes and remains very great.

87. General harmonic field. If the rectangular components
of a plane field are
1 F.=-—FPmz, F,=—"0Dmy,

%) Puy the field is a general harmonie field.
The force equations for a free particle are
% in this case
5 ¢ d
ol @ Tk %’g=_z=y.

Each of these equations is harmonic, and therefore the equa-
tions of motion of a free particle in a general harmonic field are

) z=acos (kt+B), y=>5cos (It + 7).

The path evidently lies within and touches the sides of a

rectangle whose sides are 24 and 25. Fur- ¥

thermore, the path will be a closed curve a
when % and ! are commensurable. For if Np——P lb
;_c=;_n (m and n integers), o M (X

then, since k=2 + T}, l=2m + T;, where
T, and T, are the periods of the component motions (8), we have

@ mT=nT,
Hence when a period of time equal to I'=mT,=nT, has
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elapsed, z and y have their original values, and the particle has
returned to its original position.

The curves defined by (8) are known in Physics as Lissajous’
Curves, from the name of the scientist who first studied them.
They may be defined as the path of a free point whose motion
is compounded of simple harmonic motions along perpendicular
lines.*

PROBLEMS

1. Obtain the equations of motion of a free particle in the harmonic fields for
which k=1, I=V2; k=V2, I=1; k=V3,1=1; k=1,1=2; k=2,1=2.

2. Determine the path of a free particle in a general harmonic field under the
following conditions:
(@ k=1,1=2,a=2,b=1,8=v=0.

®k=hi=la=1b=1p=2,7=0

@© k=2,l=1la=08= ‘y=-2'-'--

* See General Physics, Hastings and Beach (Ginn and Company), p. 529.



CHAPTER IX
MOTION IN A RESISTING MEDIUM

88. Law of resistance. In the preceding sections the charac-
teristics of motion in various fields have been determined without
reference to any resistance to the motion which might be offered
by the medium in which motion takes place. The law of resist-
ance must necessarily be established by experiment. For air, a
study of this law under given conditions of temperature, pressure,
etc., has been made by numerous investigators. The following
table will exhibit results found for rotating projectiles of the stand-
ard Krupp form, the assumption having been made by the experi-
menter in each case that the resistance varies as some power of the
speed. The first line gives the speed in meters per second, the
second line the resistance, a, b, ¢, d, ¢, f, g being constants of pro-
portionality.

Speed 50 240 295 875 419 550 800 1000
Resistance av® b e dvd e folT gyl

The arrangement of the table is intended to indicate that the
law of resistance holds for all speeds in the interval under which
is written the expression for the law. Thus for speeds between
50 and 240 m. per second, the resistance varies as the square of
the speed, ete. It will be observed that the resistance involves a
complicated exponent for very large speeds. In any given case
the law necessarily depends upon the shape of the moving body,
the medium (water, air, etc.), and the changing physical conditions
of the latter (temperature, pressure, etc.). We consider in this
chapter the effect upon the motion of a resistance assumed to
follow a given law.

89. Constant field. Resistance proportional to the square of the
velocity. We may begin by studying the effect of the presence
of a resisting medium upon motion in a constant field, and, as an
example, consider the case of a falling body, assuming the resist-

200
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ance to be proportional to 2. The equation of motion is there-
fore, if distance is measured downwards,

(€)) %=9—#v’,

where u is a positive factor of proportionality, called the coefficient
of resistance. Evidently u equals the resistance offered to unit
mass when moving with unit speed.

Integrating (1), we have

1 _log Vg + Vv = Vat+ C.
2Vyg \/ g— Vu
For initial conditions, assume 8 =0, » =0 whent=0. Hence
C =0, and solving for v, we obtain, after simple transformations,

\/_g -\/;,'g
— 2 Ky —e
(2) v= \/' \G.Ft t

Writing v = ds and integrating, we obtam

dt
(*57)

® 8= =1 log 2

This is therefore the desued equation of motion. The formula is
applicable to motion in any constant field under the given condi-
tions, if g is replaced by the acceleration of that field. It should
be observed in equation (1) that the initial acceleration under the
given conditions (v =0 when ¢ =0) equals g. The acceleration

then diminishes and will be zero if » =\[§- Examination of (2),

however, shows that the speed approaches this value as ¢ increases
indefinitely. For this reason this value is called the limiting
speed. In words: the speed increases constantly and approaches

the limiting value \/;2

If the resistance offered by water to the motion of a ship is pro-
portional to the square of the velocity, then (3) may be applied by
replacing g by the acceleration due to the propelling force of the
engines. In the same example, if the engines be stopped when
the velocity is vy, the equation of the further motion of the ship is

4) - = — uvd,
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since the resistance is the only force acting. Integrating with
the conditions 8 = 0, v = v, when ¢ = 0, we obtain

®) v=;r.:’0_'_—1, a-_-%log(;wot+ 1).
The equations (5) may be applied to the problem in question for
small values of ¢, this limitation being necessary on account of
complications (drifting, etc.) which must soon arise.

90. Damped harmonic motion. Resistance varying as velocity.
The motion of a material particle in a central harmonic field has
already been discussed. We now investigate the effect of the
presence of a resisting medium in such a field. For small speeds
the resistance may be assumed proportional to the first power of
the speed. Further, since the resistance and the velocity have
opposite directions, we may set

Resistance = — 2 umv,

where u is a positive constant, called the damping factor. The
force due to the field being equal to — mk?s, the resultant force #
acting upon the particle is

F=—2 umv — mi3s,

and the force equation (§= g’_t:) consequently may be written in
the form
d’s ds

Two important cases present themselves for discussion.

(a) Damping factor small, p < k. Equation (1) is now the
equation of damped vibration (78, Chap. XIV), the equation of
motion being

8= Ae+ cos (VI — pit + B),

in which 4 and B are arbitrary constants. The characteristics of
this motion have been discussed at length in example 5, p. 51. The

motion is therefore a damped vibration with the period ;" 3
— @
Obviously the effect of the damping factor is to tncrease the

period, since the latter for the undamped vibration equals -27:-' .
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A close approximation to damped vibration is afforded by the
simple pendulum for small vibrations. To obtain the desired
result we may use the moment equation

(Art. 62). Taking for center of moments
the center of suspension, the total force- 2
moment is '
Rl —mgl sin 6,
where %
R=-—2m,uv=—2m,uld—o-
dt my
The angular momentum = I —mB%. Hence the moment

dt
equation gives

a9 o df ndf\ a8
—2mpl’7i—t—mglsm0_7t(ml’§-t- _ml’ﬁ,
that is a2 dé
— 2. = . .
dta+2p,dt+lsm0 0

For small amplitudes, sin § = 6, approximately, and this equation
now agrees with (1). The discussion confirms the observed facts
of the constancy in the period of a simple pendulum and the de-
crease in the amplitude.

() Damping factor large, p>k. The solution of (1) is now
(Calculus, p. 437) .

©)) 8= Ae" + Be'¥,
in which 7, and 7, are the roots of the characteristic equation
2+ 2ur+k2=0.

Let us discuss (2) for the initial conditions 8 = a, v =0 when
t=0. These conditions are nearly met if a large vertical damp-
ing vane be affixed to a magnetic needle and if the latter is then
slightly turned from its position of equilibrium and released.

Differentiating (2), we obtain

® v=r,A4e" + r,Be'¥.
We have now for ¢t = 0,

. a=A+ B, 0=rAd+rB,
and hence

ar, r
A=-"2  pB=_%
rz—rl rl—rz
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and (2) and (3) become

@) &= (riet — rpent), v= AN (e — e,
= n—"ry

From these equations the following characteristics of the
motion are obvious — results agreeing with experience. The dis-
tance * diminishes and approaches zero as a limit. The speed
increases to a maximum and then diminishes to zero.

PROBLEMS

1. A particle is projected with velocity v, into a medinm offering a resistance
proportional to the velocity (=Av). Show that the particle would come to rest

after describing the finite space % in an infinite time.

8. If the resistance of a medium is kv, show that a particle projected with a
velocity vo would describe an infinite space in an infinite time before coming to rest.

8. If the resistance of the medium per unit mass is kv3?, and a particle slides
under the action of gravity on a smooth straight wire inclined at an angle & to the
horizontal, prove that the space s described in time ¢ from rest is given by

ks = bt — log(ezb +l)
where b% = kg sin .

4. A heavy particle is projected upwards with a velocity L in a medium resist-
ing as the nth power of the velocity. Prove that the whole space (up and down)
described when the velocity downwards is ¥ is equal to LT where L is the limiting
velocity and 7 is the time in which the particle falling from rest in the medium will

acquire a velocity %’

* 8ince ry(=— u+Vid — k3) and ry(=—pu—vuE—k3) are both negative, e’y and
"3’ both approach zero as ¢ increases indefinitely.



CHAPTER X
POTENTIAL AND POTENTIAL ENERGY

91. A constant, harmonic, or general central field has the
property : There exists a function U of the coérdinates z and y
such that the rectangular components of the force of the field are.
the negative partial derivatives of this function. That is,

12 1
@ ol oy

The function U is called the potential of the field. Obviously

the potential is given as the integral

@ =-Jhuh+n@y

Constant field. Then F, and F, are constants, say F,= A,
F,=B; hence U= — (4z+ By), and conversely, equations (1)
hold.

Harmonic field. Here F,= — mkir, F,= —mkly; hence
U= — 3} mk(2® + y*), and conversely, equations (1) hold.

Let it be understood, then, that the potential of a field (if the
field have a potential) is a function of the codrdinates satisfying
equations (1).

92. Conservative field. For a field in which there exists a
potential the following theorem is characteristic:

The work done by the force of the field upon a material particle
moving from one position to another is the same for all paths between
those positions.

Proof. 1f a particle moves PM@’:"WIJ
from Py(z,, y,) to Py(z), y;) along %
a path €] in the field whose rec-
tangular components are F, and F,, the work done is (Art. 62)

"%F@+F@y

Tor Yo
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the integral being worked out for the given path. If, however,
the field has a potential. that is, if equation (2) of the preceding
section holds, then

® [t Rap=— T~ T,

Tor Vo
U, and U, being the potential at P(z;, y,) and Py(Zs Yo)
respectively. But this equation shows that the work done equals
the difference of the potential at P, and at P, taken negatively.
Hence the work done along any other path C, is the same, and
the theorem is proved.
Again, let the particle describe any closed path from Py(zy, y,)-

The total work done 18 now zero.

Bltoye F@y)  For take a second point
3 P (z;, y,) on the path and de-

— note the path from P, to P,

by C}, and from P, to Py by C;. Then by the result just found

we have Work done along €, =—(U; — U,);
Work done along C, =— (U, — U)).

Adding gives the work done along the closed path as zero.
The designation conservative is applied to a field possessing a
potential, and also to the force of such a field. The discussion
may be summarized thus:

The work dome by a conservative force along any path equals the
negative difference of the potential at its extremities.

93. Potential energy. Conservation of energy. Comparison of
the energy equation (Art. 62) with the theorem just stated gives
the result :

When a material particle describes any path in a conservative field,
the change in kinetic energy equals the change in potential taken
negatively.

In the form of an equation, this statement reads

@ § mo? — fmog = —(U; - Uy,
if v, and v, are the speeds at (z;, ,) and (z,, y,), respectively.

By transposing in (1), remarking that } mv,? is a.constant, and

dropping the subscript 1, we obtain

(¢)) } mv? + (U — U,) = constant.
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Now }mo»? gives the kinetic energy of the particle at any
instant. Hence, since each term in this equation must be of the
dimensions of energy, we may give to (U — U,)) the name of poten-
tial energy, that is, we define

(3) Potential Energy = U— U,;
or in words: The potential energy at any point in a conservative

Jield equals the change in the value of the potential from an arbitrarily
chogen point of reference.

The essential difference between kinetic and potential energy
is this: Kinetic energy is due to motion — depends upon mass and
velocity. Potential energy is due to relative position — depends
upon the position relative to an assumed point of reference.

In (2), writing

=}md, E,=U-"U,
we obtain the equation of energy for a conservative field:
(¢)) E} + E, = constant.

Equation (I) illustrates the PRINCIPLE OF THE CONSERVA-
TION OF ENERGY for a material particle in a conservative field,
namely, this:

If a material particle describes any path in a conservative field,
the sum of the kinetic and potential energy remains constant.

A simple illustration of a non-conservative ﬁeld is afforded by the followlng
example. Using polar cobrdinates, let

Fo=0, Fo=}mp. },’,
The work integral is now (Art. 62)

Work=£}mp’d0= %j‘p’dﬁ

that is, the work done now equals the mass times the

area swept over by the radius vector of the curve in

moving from OP, to OPy, a number obviously dependent

on the path ¢ between the points. The fleld in ques- (1)

tion is a simple one, the force at any point P being perpendicular to the radius
vector OP, and proportional to it.

94. Equipotential lines and lnes of force. If U(z, y) is the
potential function for a certain field, then at every point of the
locus of

(¢)) U(z, y) = constant
the potential is the same.
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By assigning to the constant in (1) different values, we derive
a series of curves called equipotential lines, such that the potential
is the same at all points on one of these curves.

For example, in the constant fleld for which U = Az + By, the equipotenma.l
lines consist of the system of parallel lines Ax + By = constant.
If the equipotential lines are drawn in any
Urq field, the work done along any path joining
- two points P, and P equals the difference
of the potential of the equipotential lines
through P and P, or equals (¢; —¢,) in the
figure. The slope of the equipotential line (1) at any point (z, y)
is (Calculus, p. 202),

14
dy_ iz _
(2 &= "30-F, (by (1), Art. 91).
oy

Let us now find the direction of the force F of the field at the
point P(z, y). Since the axial components of ¥ are F, and F,,
then the

@hH slope of the force # = %:l

Comparing with (2), it is clear (Analytic Geometry, p. 36)
that the direction of F is perpendicular to the equipotential line
through the point of application.

The system of curves drawn in a field of force such that the
direction of the curve through any point is the same as the
direction of the force of the field at that point are called lines of
Jorce. Clearly, the differential equation of these lines is

@" %

dz
If this equation can be integrated, the lines of force may be
constructed. Or, if the equipotential lines have been drawn, we
may construct the lines of force by drawing the orthogonal trajec-
tories. For, as is clear from the above discussion, we have the

= % or Fdy— F,dz =0.

THEOREM. FEquipotential lines and lines of force intersect
everywhere at right angles.

The coordinates z and y of any point P on a curve are func-

i
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tions of the arc 8(=P,P) measured from an assumed initial
point P,. Hence, in a conservative field, the potential U along a
curve may be considered a function of the length of arc. Then,
since now U along the path P P is a function of s we have

(Calculus, p. 199)
® ay_aVds 0V dy.
ds 9z ds Oy ds
This becomes, by substitution from (1), Art. 91,
au_ _< dz éﬂ)
® s\ Fathy)

Remembering that % and %’ﬁ are the direction cosines of the
tangent to the curve (' at P, we see (Art. 40) that the second
member of (4) gives the tangential component along C of the
force due to the field taken negatively. That is, from (4),

®) e

The derivative of the potential with respect to the arc of a curve
equals the tangential component along that curve of the force due to
the field, with sign changed.

For example, the components of the force of the field parallel
and perpendicular to the radius vector of the point (p, @) are
found thus:

Taking the path along the radius vector
(6 = constant), we have

. de=dp == F 0 ¥
Taking the path as the circle p = constant, then ds = pd#6, and

hence

In particular, if we consider the variation of the potential
along a line of force, then, in (5), F,is the force of the field, or
F itself.

. . auv

(6) .*. along a line of force, T F.

In this equation we may assume the direction of increasing

arc to agree with the direction of the line of force. Then, by (6),
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%f is always negative (or zero) and hence U is a decreasing

function.* That is, the potential along & line of force diminishes

in the direction of the force. ~Otherwise

¥ expressed thus: The force at any point in a

r Cee conservative field is directed towards the region

of lower potential. If, therefore, the equi-

potential lines are drawn in a field, the direc-

“ngq,  tion of the force of the field at each point is
uniquely determined.

Finally, the equipotential lines (1), when drawn for equal
increments of the potential, for example, ¢, cte c+2€¢c+ 8¢
etc., will, if the increment e is small enough, indicate by their
degree of proximity the relative magnitude
of the force of the field. For, by the theorem /ﬂ[}—%

of mean value,} we have, using (6), g,
) &U=— (F)up - A,

where ¥ is the force of the field at some

point P between successive equipotential

lines, and As is the distance apart of these lines measured along

the line of force AB. Since AU =, (7) becomes, by solving,

(F)au'=—'K€;'

Hence the force at P is inversely proportional to the normal
distance (= As) between consecutive equipotential lines.
Our results are summarized as follows:

THEOREM. When the equipotential lines are drawn in a con-
servative field for equal small increments of the potential, the force of
the field at any point i8 inversely proportional to the normal distance
between consecutive lines.

That is, the force is greatest where the equipotential lines are
most dense, etc. In a field for which the force is everywhere of

* The function of s increases or decreases with s according as its derivative with
respect to 8 is positive or negative (Calculus, p. 116).

+ This theorem may be stated: Given a function U(s), for which %7=—- F, then
U(s) — U(s0) =— (F(8’)) (s — 80), where &’ is a value of & between & and s, and F(s') is
the value of ¥ whens=1s'.
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the: same magnitude, the equipotential lines drawn for equal
increments are equidistant.
We now illustrate the preceding by examples.

ILLUSTRATIVE EXAMPLES

1. Discuss the conservative field for which the potential is U = a%z.
The equipotential lines are a%r = ¢, that is,
lines parallel to YY’. Since

F.:—M=—a', F,:—a—U-=

the lines of force are parallel to XX’ and are

directed to the left. Setting ¢=0, +e, +2e¢, !
etc., we obtain the equidistant equipotential

lines of the figure, z =0, z =+ -, z = 4+ 2%, etc.

a? a?

The work done by the field along any path from

P, to P equals — 9 = i—" (:z:’ a negative number, since the motion is against the
fleld.

2. Discuss the conservative fleld for which the potential is U = §} k%32.
The equipotential lines are } k?z2 = ¢, lines parallel to
YY. We find

F,—_%l=_m, F,=0,

80 that the force at any point is directed towards YY", and
is proportional to the distance of that point from XYY’
Setting ¢ =0, + ¢, + 2¢, + 3¢, otc., we obtain the equipo-
tential lines of the figure. It is observed that these lines
are closer together as we recede from Y'Y’, an indication of
increasing force. The potential is & minimum when z = 0,

and the necessary condition for this, namely, %g: 0 when

x = 0, is seen to be satisfied.

3. Dlscuss the conservative fleld for which the poten-
tial is U ==

p
The equipotential lines are the concentric circles B_ [
P

— =_0U__B p__1U_
orp=k3+c. Wefind Fpo= = @ Fo= PET) 0.
In the figure the equipotential lines are drawn for ¢ = k3,
k3 + e, k3 + 2 ¢ etc. The decreasing distance between the
circles as the center is approached indicates increasing force.

4. Discuss the Principle of the Conservation of Energy for the motion of a
projectile when the angle of elevation is § =.
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Choose the initial position O as the point of reference for determining potential

energy. Then in the equation of energy (I) we have, since at O
E, =0, E, = } mve, the result
(¢)) Eiy + E, = § mvo?.

The lines of force being directed downwards, K, increases during ascent,
and diminishes during descent. Hence during ascent K, must constantly
decrease ; that is, the velocity must decrease, and become zero, namely, at
the highest point. The maximum value of E, is therefore } mo,®. In de-
ol scent, since E, constantly diminishes, K, increases without limit, that is,

the speed increases.
Analytically, we have for the fleld
F.=0, F,=— mg.
o~ E=U- Uo=-5;'F,dy = mgy.
Hence the equation of energy is
3 mv? + mgy = § moe®

If h is the greatest height, then

mgh = } mve?, orh=1902+2g.

8. Discuss the equation of energy for a simple pendulum.

Taking the lowest point O for reference, then in (I), if v, is the speed at O, we
have for the equation of energy

(1) E: + E, = }mooz.

Since the lines of force are directed downwards, E, in-
creases in ascent and diminishes during descent. Hence,
a8 in the preceding example, E; must diminish when the
particle moves from O towards A4 ; that is, the speed must A A
decrease to zero at 4. At this extreme position, K, is X
a maximum. In descent from A4, E; diminishes towards
zero ; Ej increases, reaching the maximum value (= { mo,?) again at O. This cycle
is repeated from O to A’ and A’ to O. The motion is therefore a ceaseless vibra-
tion from A4 to 4.

Analytically, as before, E, = mgy, and (1) is { mov®+ mgy = } mo. The
greatest vertical height is therefore wve? +2g¢.

8. Discuss the equation of energy for simple harmonic motion.

Assuming the center O as point of reference and v, as velocity at O, the equa-

. . tion of energy is

y o A (¢)) Ei + E, = } mogt.

From example 2, we know that E, increases when the motion is away from
the center, and diminishes for motion towards the center. Hence E, must con-
stantly diminish and become zero when the particle moves away from the center,
and must subsequently increase until the center is again reached. We see, there-
fore, as in example 5, that the motion must be a ceaseless vibration.

Analytically, since F; =— mk%, F, =0, we have

E, = _5;’ Fydz = § mkiz.

Hence (1) is § mv? + § mk32® = } mvo?, and for the amplitude we find
=4 09+ k.
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PROBLEM

1. Discuss the conservative flelds for which the potential function U is that
given : :
(a) by; () ax+dy; (c) az?; (d) b5 (o) e+ 0y () exy;
(9) ax® 4+ by? + 2dz + 2 ey.

95. Non-conservative forces. Friction. The work done by the
force in a conservative field changes sign when the direction of the
motion is reversed. It is therefore obvious that friction is not a
conservative force. For the direction of the force of friction is
reversed when the direction of motion changes, and conse-
quently the work done by a frictional resistance does not change
sign. For example, if the resistance offered by the air is con-
sidered in the motion of a particle projected vertically upwards,
the frictional resistance is opposed to the motion in all positions,
and consequently the work done is negative in both ascent and
descent. In the illustrative example 4 of Art. 94, therefore, we
see that in nature the velocity of the projectile will be lessened,
a conclusion agreeing with the observed fact that the velocity is
less when the projectile returns to the initial position. ~Again, in
the discussion of the simple pendulum (example 5, Art. 94), if
the frictional resistances present in nature are considered, the
motion will not be perpetual. Friction will act to diminish the
velocity.

In general, non-conservative forces are said to be dissipative,
since by their action kinetic energy is lessened without an equiva-
lent increase of potential energy. In nature, non-conservative
forces are always present, and accordingly the principle of
the conservation of energy does not apply in the form enunciated
in Art. 98. To cover the actual facts, thermal and chemical
energy must be considered, matters with which we are not
concerned in this volume.

96. Newtonian potential. According to Newton’s Law of
Universal Gravitation (Art. 81), two particles attract each other
with a force varying directly as the mass of each and inversely as
the square of their distance apart. The force is therefore, with
proper notation and units,

) F=-_1M,



.
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Consider, now, the plane field of force due to the attraction
of a particle of mass m situated at the origin. The force upon
unit mass at any point is, therefore,

P
2 F,=-7, Fy=0.
I'} ( ) P pa [}
;’ The potential function is, accordingly,
0 X (® U=C’—fF,,dp=0—%-

If, for p = o, we assume U =0, then (=0, and (3) becomes

4 v=-"
4) P

The newtonian potential at P is defined as equal to m + p,
or, denoting this by N,

®) . N=-U=

o3

From the result of Art. 93, we may make the definition:
The newtonian potential at any point equals the work done in moving
up to that point from infinite distance.

Y P
To study the field due to two attract- O
ing centers of masses m and m/, we merely G4
have to observe that the newtonian po- (74

tential at any point P must equal the sum of the potentials due
to the separate masses. This appears at once from the above
definition. Hence,
!
() N=T", 7,
pr
Similarly for any number of centers. The newtonian potential
due to the attraction of a continuous solid is readily defined, for if
the solid is divided into elements of mass, and.a point chosen in
each element, then, proceeding as usual, we define the potential
Nat Pas

) v= ! %

in which p denotes the distance from P to any point of the solid.

ILLusTRATIVE ExamprLE. Find the potential due to an attracting thin homo-
geneous spherical shell of density . Find the force of the fleld at any point.
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Solution. Take the center of the sphere as origin and draw OX through the

point P. Let OP=c. We may consider the shell divided into strips by planes
passed through it perpendicularly to OX. The mass dm of one of these strips* is
2 radz times . The distance p from the strip to Pis VyZ + (c — x)2. Hence

N= '—M:Tlar de

J-aVyi + (c — )2 _Vai+ O — 2cx
The radical must be taken with the positive sign, and this makes it necessary to
distinguish two cases.
(I) ¢>a, exterior point. Then
N= —2':"[c—a —(c+a)] =4r:“1- _ ass (;f shell
Hence the newtonian potential for a spherical
shell at an exterior point is the same as if its
mass were concenltrated at its center.

(II) ¢ < a, interior point. Now
N=_“’:l[a-c-(a+c)]=4mr, !

that is, is the same at every interior point. Hence
the force of the field is zero within the shell.
The result for an exterior point is extended at
once to & solid sphere by conceiving it to be made up of concentric shells, Hence
the

TueoreM. The newtonian potential for a solid sphere at an external point is
the same as if its mass were concentrated at its center.

Consider now an interior point of a solid sphere, at the distance of z from its
center. We conceive this sphere as consisting of (a) a spherical shell of interior
radius z and exterior radius equal to that of the solid sphere ; (b) a solid sphere of
radius z.

Take these up in order.

(a) Since the potential is everywhere constant within the shell, its attraction
is zero. Consequently, the attraction exerted is that due to the solid sphere of
radius z. .

(b) The mass of this sphere is § »7x%, and hence the attraction is by the theorem
— $ v72% + 23, or equal to — §xr2z. That is, the attraction exerted by a solid sphere
upon a point within it is proportional to the distance of that point from the center
of the sphere.

Finally, we readily see that the mutual force of attraction of two solid spheres
is the same as if their masses were concentrated at their respective centers.

PROBLEMS

1. Find the newtonian potential due to & line distribution of matter (thin
uniform rod) at a point on the line produced.

Ans. N = rlog(l + f_i) , where ! = length of line, d = distance of point from
nearest end.

* The surface of a zone equals the product of its altitude by the circumference of a
great circle.
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2. Find the force of attraction of the rod in the first example upon unit mass
at the given point. Ans. F= aN _ T

—_—I - —

dx  dad +d)

8. Find the newtonian potential due to a homogenous circular disk at a point
on the line through the center of the disk and perpendicular to its plane,

2
4ns. N= ';’;”‘(\/a’ + 22—z), where m = maass of disk, x = distance of point from disk.

4. Find the force of attraction exerted by the disk in problem 8 upon unit mass
at the given point. 4 2m ( x )
. ns, F==— -1).
Va+ 28
5. Find the newtonian potential due to the attraction exerted by a homogeneous
right cylinder or cone at a point upon the axis,

6. Find the newtonian potential due to & homogeneous square plate at a point
on a side of the square produced.



CHAPTER XI
SYSTEM OF MATERIAL PARTICLES

97. System in a plane. The preceding chapters have been
devoted to the study of motion of a single particle. We shall
now study the simultaneous motion of two or more particles, and
in this manner prepare ourselves for the study of motion of a
golid.

Consider a system of two particles moving in a plane. Let
m, and m,; be their masses, and the positions
at any instant P;(z,, y,), Py(2, ¥,), respectively.

Then if (F,,, F,,) are the axial components of the
complete resultant of the forces acting upon the B
particle at Py, and (F,, F,) the same at P,

the force equations (Art. 62) are, for the first particle,

&, d*y,

@ my dt’ =Fi»n m—=3 dt* =Fy,
and for the second particle,
d?z, a2y,
)] My~ dt’ =Py my—g’ a8 P = Fyy

Motion of the center of gravity. Adding the first equations in
(1) and (2), we obtain

d*x d*z,
.® g *™ga = Tt B
also from the second equations we get
a3 d?
@ m, d.t% +my dfzz =Fyy+ Fy

If P(z, y) is the center of gravity of the given particles, then
(Art. 22)
z="Taf Mty MYyt MY,
my+my my+my
or also

(5) myz, + myzy = (my + Mz, MY, + My, =(m; + my)y.
217
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Differentiating (5) twice with respect to ¢, and substituting

in the first members of (3) and (4), we obtam

a2
6 (m1+m’)dt’ =F,+ F,, (ml+m,)‘—i—t?—1' + Fy,.

The second member of the first of equations (6) is the sum
of the X-components of the resultant forces acting on the first and
second particles which comprise the system. It is therefore the
sum of the X-components of all forces acting upon the system,
and will be denoted by F,. Similarly the second member of the
second of equations (6) is the sum of the ¥Y-components of all
forces acting upon the system, and will be denoted by F,.
Denoting the mass of the system, which is the sum of the
masses of the individual particles, by M, equations (6) may be
written

M Md’:c diy

dt“—F M—+=F,

dt’

These are the fundamental equations of motion of the center
of gravity of the system. Their discussion shows that this point
moves as if forces equal and parallel to the given forces were act-
ing at that point upon a mass equal to the combined mass.

That is, the center of gravity moves as if the total mass of the
system were concentrated at that point and acted upon by forces equal
and parallel to the given forces.

98. System in space. Let the masses of n particles moving
in space of three dimensions be denoted by m,, my, ---m,. Let
the positions at any instant be given by P,(zy, ¥y 2,)s Py(Z3 Yo 23)»

P (2, Y 25), and the axial components of the complete resultant
of the forces acting upon the individual particles by (Fy,, F,, F}.),
For Fopp Fy)y -+ (Frzo Fopy F,;). The force equations for the
separate particles are

[ dBr d3 d2
mld_tzl= 12 "“1—(1%!=Fm "”171?3!=Fw
diz, d3y a3z,
@) ‘mﬂdt} Fopy mg—3 e =Fzm ™ Ia ? = Fy,
der 2By, d2,
T . m, ae Fopr Magg =
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Motion of the center of gravity. Adding the first column of
equations (1), we get
&z a3
®) mld—t,‘+m,%+ My =Pt Fpt o Py

If P(z, y, 2) is the center of gravity of the system, then

(3) 5___. myx; + mezy + s MyZy,
my + mg + oMy,

If M (= m,+ my+ --- m,) is the total mass of the system, and
F.(=F,+ Fy, + - F,;) is the sum of the X-components of all
forces acting on the system, it is evident that equation (2) may
be written

d*z
M- b7 =7F,

Similar equations in y and 2z respectively follow from the
second and third columns of (1). Hence the fundamental equa-
tions for the motion of the center of gravity of the system are

&% _ oy &%
) MI=F. MZE=F, MZ=

Equations (4) show that the statement of the preceding arti-
cle concerning two particles moving in a plane holds also for n
particles moving in space. Hence the

F,.

THEOREM. The center of gravity of a system of material par-
ticles moves as if the total mass of the system were concentrated at
that point, and acted upon by forces equal and parallel to the given

JSorces. 'y
In particular, if the vector sum of all / L
forces acting is zero, then
d*x d*y d% B
er_o, Y¥_0, 2_0
. de? 0 Ga asg .
and the center of gravity moves with uniform \
rectilinear motion. For example, in the case B

of three particles moving under the action of their mutual gravi-
tational attraction, the forces are in pairs equal in magnitude but
opposite in direction, and their vector sum is zero. Hence the



v v/ 220 THEORETICAL MECHANICS

THEOREM. The center of gravity of a system of particles mov-
ing under the action of their mutual gravitational attraction will de-
scribe a straight line with constant speed.

This result is called the principle of the conservation of the
motion of the center of gravity.

99. Moment equation for a system of particles. Let the
first of equations (1), Art. 97, be multiplied by y, and the sec-
ond by z;,. Then, by subtraction,

a3 d*z
@ ml(”:ﬁ%“.’/ld—t;) =z, Fyy — 91 F1e
It may be easily verified (see Art. 59) that

y, ., &z _d dyl d”x)
198 "N @\ Vg

Hence equation (1) may be written (see Art. 69)

dz
7 ‘”1"”1 —.'/1 1—1>="’1F1v,_.'/1F1
gg dt )df_i_ i~ ) RS R
dosir Now th ec r is the moment 1___@1
* 7 | respect to_the ongm and the guantity in parenthesis is the

moment of momentum (Art. 59) of m; with respect to the origin.
Denoting the latter quantity by Hv equation (2) becomes

ax,
 Tal moment of F.
Also from equations (2), Art. 97, similarly,
dH,
d_t = moment of F,.

If H= H, + H, denotes the total moment of momentum of the
system, and if the total force-moment of the system is defined as
the sum of the moments of the resultant forces acting on each
particle, we have, by addition, .

(fi_?— total force-moment.

This result is clearly a generalization of (VIII), Art. §9.*

® This result, proved for two particles in the X Y-plane, may be extended by a similar
process to any number of particles in space of three dimensions.
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In particular, if the forces acting are as before mutual gravita-
tional attractions only, the forces and consequently their moments

cancel in pairs, and d

W=O, or

H = constant.

THEOREM. PRINCIPLE OF THE CONSERVATION OF MOMENT
OF MoMENTUM. The total moment of momentum in any system
of particles moving under the action of their mutual gravitation is
tnvariable.

100. Work and energy of the system. The total work done
upon a system of material particles is obtained by summing up
the work done upon each individual particle by the resultant of
the forces acting upon it. The kinetic energy of the system at
any instant is the sum of the kinetic energy of the individual
particles. Referring to the two particles of Art. 97, we have for
any displacement,

Work done by F, = }(mv,®— m;v;'?) = change in K.E. of m,.
Work done by F = }(myv,? — myv,/?) = change in K.E. of m,.
Hence, by addition,

(1)  Total work done = }[mv:? + Maws? — (M10,'? + Mywy'?)]
= change in K. E. of system.
As in the preceding articles the result expressed by equation
(1) is general.

101. Rigid system of particles. An especially important ex-
ample of motion of a system of particles arises when the system
is rigid; that is, when the mutual distance B
of each pair of points is invariable. The im-
portance of this case is due primarily to its
application in the case of a rigid solid body, g
which is then regarded as a continuous rigid
system.

The rigidity is to be regarded as maintained by a constraint
which exerts upon any pair of particles P, and P, reactions equal
in magnitude but opposite in direction. These reactions are un-
known, but cancel out in the equations of motion, as shall now

appear.

5]

o



222 . THEORETICAL MECHANICS

The forces acting in the motion of any rigid system may be

classified as ‘
(1) reactions due to the rigidity ;
(2) impressed forces.

Let (R,,, R,,) be the axial components of the reaction due to
rigidity at P}, and (R,,, R,,) be the components of this force at
P;. Then

¢H) R.+ R,,=0; R,+ R,,=0.
Let the sum of the axial components of the impressed forces at

P, be (Fy,, Fy) and at P, be (F,,, Fp). Then the equations of
motion are, for the first particle,

. d* d
@ ml—dt—; =F.+ R, mld—gl = Fy, + Ry,
and for the second particle,
d3z, a2
3 "”2‘#=Fzz+3w %'%:FW'FR”'

Then the method of Art. 97 gives at once the

THEOREM. The center of gravity of any rigid system moves as
if the mass of the entire system were concentrated at that point and
acted upon by forces equal and parallel to all impressed forces.

In analytic form this theorem is for space

i -
1¢)) P2 _r, u%Y-F, M-,

where M is the total mass of the system, ¥ is the resultant of the
impressed forces, acting at the center of gravity (z, ¥, 2).

For a rigid system of particles in the X Y-plane we may obtain
by the process of Art. 99 the

THEOREM. The time-rate of change of the total moment of mo-
mentum of any rigid system equals the total force-moment of the tm-
pressed forces.

In analytic form, this is

a Gy (- v)= 3 (e -vr)

=1

In applying this theorem, any point whatever may be chosen as the

center of moments.
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Consider next the question of work and energy, supposing the
two particles of Art. 97 are rigidly connected. Let the equations

of motion of P, and P, be, respectively,
Y]
@ 7y =¢1(t),  Zy=y(2), N\

Y1=91(t)  $1=¥3(D- ™
At the instant ¢ = 0 let the position of the , B
system be P, P, in the figure. At any E

other instant, ¢, let the position be P,/ P,'. 5 8
The total work done by the reactions
due to rigidity is then given by the sum of the definite integrals

j; '('Rlzdzl + Ry, dyy) + j; '(R,,dx, + Ry,dy,)-

By virtue of equations (4) the integrands are functions of ¢
alone, and since from (1), R, = — R,,, R,, = — R, we may write
the expression for the work in the form

) f ‘[Ryu(dz, — dzy) + Ry (dyy — dyp]-
Now 0

© (@ =252+ (4, — )=,
where ! is constant. Differentiating (6), we obtain
(M (=2 (dz; — dzy) + (¥, — ¥2)(Ay, — dy,) = 0.

¥ P Now R,.=R,cos(z, )= Rlﬂ%ﬂ,
2

R,,= R, sin (z,1) = R,-’&‘T-’b-

] _ 1
..2‘,—:111————-

[7) X R,

l
Ry Yo— 9= E R,,.

Hence (7) becomes after dividing out TZZ_’
. 1

R, (dz, — dzp) + Ry (dy, — dy,y) = 0.

Hence the definite integral in (5) is zero, and the reactions R,
and R, do no work. We see therefore that in a rigid system the
work done is contributed by the impressed forces only. This re-
sult can be extended at once to a system of » particles, and we
have
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a1
Work done by impressed forces = change in kinetic energy

= i (M — mivn?).
=1

Work done tn a constant field upon a rigid system. Let the
constant force be weight, and draw the axis of ¥ vertically down-
wards. Then for a single particle the work done is

m g (3, — X)),

if y, and ¥, are the final and initial ordinates. Hence the total
work is

® gm.y(.m -¥Y)= 9[2 my,— 2, mJC]-

If ¥ and y are the initial and final
‘Y! i O % I X ordinates of the center of gravity,
l”x Yic then = zm‘Y‘ - Em‘y‘
9 Y = N y=
2m 2m
b4 ¢  Hence (8) becomes, if > m, =M,

(IV)  Total work done by gravity = Mg(y — ¥).
This gives the important

THEOREM. If a rigid system 18 in motion under the action of
weight only, the total work done equals the total weight of the system
multiplied by the vertical displacement of the center of gravity.

PROBLEMS

1. Two particles of masses 50 1b. and 40 lb. are acted upon at a certain
instant by parallel forces of 75 poundals and 60 poundals, respectively, whose lines of
action are 4 ft. apart and perpendicular to the line joining the particles. Determine
(a) the position of the center of gravity and (b) its acceleration at the instant
named.

Ans. (b) 1.5 ft. per second per second, if the forces have the same direction.

2. If the two particles of problem 1 attract each other with forces of ‘40

poundals, the remaining data being as before, compute (a) the acceleration of each
particle and (b) the acceleration of the center of gravity.

Ans. (b) 1.5 ft. per second per second.
8. A particle of mass m slides down a smooth inclined plane of angle e, the

plane itself (mass M) being free to slide on a smooth table. Find the acceleration
of the particle and of the plane. ’
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4. A system consists of two particles, of which one (m;) moves always on the
X-axis with an acceleration — ¥2x, and the other (m;) along the Y-axis with an
acceleration — k2y. Discuss the motion of the center of gravity.

5. To the system of problem 4 is added a third particle (ms) which moves along
& line whose inclination to the X-axis is 46° with a constant acceleration @. Discuss
the motion of the center of gravity.

6. Three particles in the X¥Y-plane are acted upon by forces as follows :
m; by a force equal to k¢ whose inclination to X-axis is 46°,
ms by a force equal to k¢ whose inclination to X-axis is 135°,
mg by a force equal to — V2 k¢ in the direction of ¥-axis.
Show that the center of gravity moves uniformly in a straight line.



CHAPTER XII
DYNAMICS OF A RIGID BODY
KINEMATICS

102. Rigid body. A rigid body is defined mathematically as
a continuous system of material particles whose mutual distances
remain unchanged. The motion of a rigid body is known if the
motion of each point of the body is known. More explicitly, we
say the motion of a rigid body is completely determined if we
know :

(1) the position of the body at any instant ;

(2) the velocity of each point at any instant ;

(8) the acceleration of each point at any instant.
The position, velocity, and acceleration of each point are known,
if the position, velocity, and acceleration * of three of the points
not on the same straight line are known. Hence in the general
case, the discussion of the motion of a rigid body may be reduced
to the discussion of the motion of a system of three particles,
forming an invariable triangle. For practical purposes we con-
fine our attention to the simple types of motion treated below.

103. Translation. The motion of a body is a translation if

every line in it remains parallel to its original

= position. Such a motion is observed in the

4 driving rod of a locomotive or in the motion

of a book sliding upon a table so that one

edge of the book remains parallel to one edge

of the table. At any instant every point of

the body has the same velocity both in direction

and magnitude. The motion is completely

determined if the motion of a single point is known, e.g. the motion
of the center of gravity.

¢ Since the mutual distances of these points are invariable, these quantities are not
independent.
226
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In uniform translation the velocity is constant and the path of
any point is a straight line.

In uniformly accelerated translation the acceleration is con-
stant and the path of any point is rectilinear.

104. Rotation. The motion is a rotation if the body turns
around a fixed axis, its points describing circles which lie in
planes perpendicular to the axis and have their centers on the
axis. An example of rotation is furnished by a fly wheel. At
any instant, every point of the body has the same angular velocity
about the axis. The motion is completely determined by the
motion of a single point.

In uniform rotation the angular velocity is always constant.

In uniformly accelerated rotation the angular acceleration is
always constant.

105. Uniplanar motion. In this type of motion the body
moves so that all its points move parallel to a fixed plane. Ex-
amples are furnished by a rolling cylinder and the connecting
rod of an engine.

The velocity of each point is parallel to this fixed plane, which
is called the directing plane. Each line in the body perpendicular
to the directing plane moves parallel to itself, and at any instant
every point of this line has the
same velocity.  Consequently,
we need to study the motion only
of all points in the body lying
in a plane parallel to the direct-
ing plane. Let the plane of the
paper be such a plane. Let O
and P be any two points.

Let v, = velocity of O;
v = velocity of P.

Since the distance OP is invariable, the motion of P relative to
O must be a rotation about 0. If v, is the velocity of P relative
to O, then v, must be perpendicular to OP. The actual velocity
(v) of P is then compounded of the velocity (v,) of O and the
velocity (v,) of P relative to 0. That is in the sense of vector
addition v = vy + v,.
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The velocity of any other point P’ in the section may be
treated in the same way. The velocity (v/,) of P’ relative to 0
must be perpendicular to OP’ and, since the body is rigid, we
have the proportion v, : OP : : ¢/, : OP’. The actual velocity (v/)
of P’ is given by v'= v/, + v,. Hence the motion of the body is
at any instant compounded of:

(a) a rotation about a temporary axis chosen arbitrarily per-
pendicular to the directing plane ; and

(%) a translation parallel to the directing plane with a velocity
equal to that of any point on the temporary axis.

In the notation used,

Velocity of translation =v,;
@

Angular velocity of rotation = 0”"p

THEOREM. INSTANTANEOUS AXIS. There 8 at each instant
an azis perpendicular to the directing plane which is at rest.

Proof. Draw AB in the plane of the

~—— 4 section at right angles to v, Assume the
— direction of rotation of AB about O as in
- % the figure. Lay off on 4B
@ 00 =",
(1] e e
% where v, =speed of O, o= angular ve-
B_/ locity about 0. Then the velocity of rota-

tion of C' about 0 =— v, Since the actual

velocity of C is the resultant of v, and — v,
it is zero. Q.E.D.
The point C is the instantaneous cen-
ter of the section. The locus of the in.
stantaneous centers is the instantaneous
axis. Since the velocity of O (any point)
is vy =w . OC by (2), the angular velocity
of the body about the instantaneous axis is @ also, that is:

THEOREM. In the resolution of a uniplanar motion into a trans-
lation and a rotation, the angular velocity about the azis is the same
Sor all azes. )

To construct the tnstantaneous center. Given the actual veloci-
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ties of two points O and O' in a section parallel to the directing
plane. Let OT and 'R be the vectors representing the veloci-
ties. From the preceding proof of the exist- , __

ence of an instantaneous center C, it is seen r

that C' must lie on a line perpendicular to OT, ,
and also on a line perpendicular to ’ . Draw /9\
OL and L’ perpendicular to O7 and OR, re- R
spectively. Then the intersection of OL and e

O'L’ is the instantaneous center. To construct P (o4

the instantaneous center in any uniplanar Z
motion it is necessary to know only the directions of the motion
of two of the points. Q.E.F.

In the preceding discussion we have proved the

THEOREM. Uniplanar motion may at any instant be regarded
as a rotation about the instantaneous axis.

106. Centrodes. The instantaneous center moves both relative
to the body and in space. The locus of its various positions
Y relative to the body is called the dody
centrode SS. The locus of its va-
rious positions in space is called the
space centrode §'S'. The body cen-
trode is fized relative to the body. The
space centrode is fived in space.
These two loci are tangent at any
instant. The motion of the body
may be arrived at by rolling the body centrode upon the space
centrode.

107. Screw motion. In this type the motion is compounded
of a translation and rotation. The body rotates about an axis in
space and at the same time undergoes a translation along the axis.
The motion of the points in the axis of rotation is clearly a trans-
lation. The path of any other point is a curve traced on a
cylinder about the axis of rotation. This curve is a helix if the
angular velocity bears a constant ratio to the velocity of trans-
lation. The position of the body at any instant is given by the
position of one of its points (provided this does not lie on the
axis of rotation).
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ILLUSTRATIVE EXAMPLES

1. The motion of a projectile is compounded of a uniform translation along its
axis and a uniform rotation around its axis. Find the equations of motion of any
point.

Solution. Let the Z-axis be the line of motion of the axis of the projectile.
Consider the motion of the point P(z, y, £). A plane section through P per-
pendicular to the Z-axis has for its instantaneous center the point C (0, 0, 2). The

motion of C is uniform translation. Hence,

z=a+ bt.

The motion of P relative to C is uniform rotation.
Hence, if d denote the distance CP and if the initial
position of P is in the XZ-plane, we have

{z =dcoskt,

y= dsin kt.

Hence the equations of motion of the point P are
x = dcoskt,
y= dsin ke,
z2=a + bt.

The path of the point is a helix (Calculus, p. 272).

2. A line 4B moves with its extremities on two perpendicular lines. Find the
centrodes and the direction of motion of any point at any instant.

Solution. Let the point A move along the X-axis gnd the point B along the
Y-axis. The instantaneous center corresponding to any position of the line AB is
found by erecting a perpendicular to the X-axis at A and a perpendicular to the
Y-axis at B. These lines intersect in the point C,
which is the instantaneous center. The body cen-
trode is the locus of the point C relative to AB.
Since C is the vertex of a right triangle constructed 2 Cex.p
on AB as a hypotenuse, the body centrode is a VARY
semicircle (ACB) with AB as diameter.. The space \
centrode is the locus of C in space, that is, rela- \\

=~

W~

tive to the X Y-plane. Denoting the cotrdinates I
of C by (z, y) and the length of AB by !, we have, \
for any position of C, |

A 4 X
23+ 92 =10 0

Hence the space centrode is a circle (A'CB'), with center at the intersection of
the two fixed lines and radius equal to the length of 4B. It is readily seen that the
motion of AB under the conditions stated in the problem may be accomplished by
rolling the circle ACB, of which AB is the diameter, on the inside of the circle
A'CB', of which AB is the length of the radius.

At any instant the motion of the line is a rotation about C. Hence the direc-
tion of motion of any point P is perpendicular to the line PC.
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PROBLEMS

-

1. The center of a fly wheel moves in a straight line (in the plane of the wheel)
with constant velocity b, while the wheel turns with constant angular velocity w.
Find the equations of motion of & point on the circumference.

2. In the preceding problem suppose the center moves with constant accelera-
tion f, and the wheel turns with constant angular acceleration e. Find the equa-
tions of motion of a point on the circumference.

\
3. A circular disk rolls on the X-axis. If the center moves with a constant
acceleration f, find the equations of motion of a point on the circumference.

4. A circular disk A rolls on the exterior of a second circular disk B. Deter-
mine the centrodés. )

5. A pole slides through a fixed ring while one end moves along a horizontal
line a feet below the ring. Determine the centrodes.

6. A chord of a circle moves around the circumference. What are the
centrodes ? !

7. Construct the centrodes for the connecting rod of an engine.

8. A point P of a plane figure moves with constant speed along a straight line
while the figure rotates with constant angular velocity. Show that the body and
space centrodes are respectively a circle whose center is P and a line parallel to the
path of P.

9. A coin of radius a rolls down a plane. What is the locus at any instant
of all points having the same speed as the center.

10. A plane figure moves in its own plane so that & point P moves on a curve C
with constant speed, the figure meanwhile rotating with constant angular velocity.
Show that the motion may be obtained by rolling a circle with P as a center upon
a parallel curve of C.

11. Construct the centrodes for problems 8 and 10; (a) when the acceleration
of Palong its path is constant and the angular velocity is constant: (b) when the
acceleration of P is constant and the angular acceleration is constant.

KINETICS

108. Force equations. Work and emergy. In Art. 101 cer-
tain theorems on the motion of a rigid system of material particles
were proved when the number of particles is finite. These theo-
rems can be extended to cover the motion of a rigid body, which
has been defined as a continuous rigid system of material particles.
In the case of a finite number of particles the theorems were
proved (see, for example, Art. 97) by forming the sum of a finite
number of expressions. In the case of an infinite number of
particles forming a continuous system, the limit of the sum is con-
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sidered. In other words, the ordinary finite sum is replaced by
the definite integral. This process, which is carried out in detail
in the following article on kinetic energy, shows that the theo-
rems of Art. 101 are applicable to the motion of a rigid body.
For the motion of the center of gravity we have the

THEOREM. When a rigid body is subjected to the action of any
Jorces, its center of gravity moves as if the entire mass of the body
were concentrated at the center of gravily and the given forces applied
there parallel to their former directions.

For example, when no forces are acting, the center of gravity
has uniform motion in a straight line. When the forces acting
are all equal and parallel, the center of mass has uniformly accel-
erated rectilinear motion, or else describes a parabola. The center
of mass of a projectile describes a parabolic orbit.

From the theorem stated above we may write the force equa-
tions for the motion of the center of mass. For plane motion of
the center of gravity these are :

iz @?
@ MGy =Fo M g=Fy

where M is the total mass of the body, (z, y) the cosrdinates of
the center of mass, and ¥ is the resultant of all applied forces.
From Art. 101 we have for a rigid body the energy equation
(II) ‘Work done on a rigid body
by all impressed forces
In particular

} = Change in kinetic energy.

Work done by weight = Mgk,

where M is the mass of the body and A is the vertical distance
described by the center of gravity.

109. Kinetic energy. The kinetic energy of a system of
material particles was defined as the sum of the kinetic energy

of each particle, K.E. = 2% mad.

We now apply this definition to the continuous system of particles
forming a rigid body. Dividing the whole mass in any way into
n small elements A;m, Agm, ---Am, ---A,m, we have as an approxi-
mate value of the kinetic energy of the small element Am the
expression 3 Amod,
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where v, is the speed of some point P; within the element. As an
approximate value of the kinetic energy of the whole mass we

have A n % A 3
n = "mvi .
2

Let the number of elements into which the l‘
whole mass is divided be increased indefinitely ~
in such a way that Aym (for every ¢) approaches

zero as & limit. Then the definition of the kinetic energy of
the rigid body is

n=o n_w 2A| v3 _—'j“lﬂdm.

where the definite integral is understood to extend over the entire
mass.

We shall consider the calculation of the kinetic energy in the
four types of motion treated in Arts. 103-107. n

(i) Translation. For every point of the body theAvelocity is
the same at any instant. Hence in (III) v is a constant, and

- 1 v? 1
@ K.E. = -2-fv’dm =% [(am=2 1,
‘'where M is the total mass of the body.
(ii) Rotation. For every point of the body the angular velocity
1 * o about the axis of rotation is the same at
any instant. Consider an element of mass dm

XP\ at P, moving with velocity » in the circle
o—r whose center is 0. Then if ® = angular ve-,
locity about the axis I,

V=ro.

Hence
@ K.E.=§[v3dm=;w’fﬂdm=§I,w’,
where Z; = moment of inertia with respect to l.

(iii) Uniplanar motion. Through any point O choose a tempo-
rary axis [, perpendicular to the directing plane. It was shown in
Art. 105 that the motion is compounded of (1) a motion of trans-
lation with velocity v, equal to the velocity of O, and (2) a motion
of ‘rotation with angular velocity ® (the same for all points)
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about I. The kinetic energy due to translation is } Mv3 and the
kinetic energy due to ratation is 3 Jiw® Hence the fotal kinetic
energy is

3 K.E. = }Mv°’+§10w ’. ,4(,' mdﬁy(_‘
If the temporary axis is the instantaneous axis, then v,=0 and
€)) K.E. =} Io?

where I, is the moment of inertia about the instantaneous axis.
An important formula for the kinetic energy is obtained if the

temporary axis passes through the center of gravity of the body.
Then (8) becomes

(5) K.E.=} My3+} Lot

This formula exhibits the.Xkinetic energy as made up of the
_energy of translation of the entire body with a velocity equal to
that of the center. _Qf.gmymy and the energy of rotation about an
axxs through the center of gravity.

(iv) Secrew motion. Since screw motion is compounded of a
translation along an axis in space and a rotation about this axis,
the total kinetic energy is the sum of the energy of translation and
the energy of rotation. If v denotes the velocity of a point in the
axis, the kinetic energy of translation is } M»?. IfIis the moment
of inertia with respect to the axis along which the body is moving,
and o is the angular velocity about this axis, the kinetic energy
of rotation is } Iw®. Hence the total kinetic energy of a body

_executing screw motion is given by
K.E. =] Mv®+ } Ia2

-~
-

110. Moment equation in rotation. It was shown in Art. 99

for any system of material particles that the time derivative of the
moment of momentum with respect to

v point is equal to the total force-moment

P with respect to that point. This result

) 3 may be stated in & new form when the

0 X system of particles is rigid and rotates

about an axis. Consider first a single

particle in the X¥Y-plane moving in a

circle of radius » about the origin. Then

the moment of momentum, Art. 59, with respect to the origin is
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mrv where v is the linear velocity, or mr%» where o is the angular
velocity. Since m and r are constants, the moment equation of
the particle is
d a3
@
(¢H) mr2—— 57 =mri— 7 =1,
where ! is the moment with respect to O of the resultant of all

forces acting upon P. Now mr? is the moment of inertia, ¢, of m
with respect to 0. Hence (1) may be written

.d*0
2 — =1
@ =t
Equation (2) holds for each particle of a ;'igid system. Suppose,
for simplicity, the system consists of two particles, P; and P,
rigidly connected, and rotating about the origin. Since the system

is rigid, the angular acceleration %‘? is the same_for each-particter—
Hence we have

a9, .d%
‘1W=lv "zjtg"-'la’
and by addition,
® Gi+ipT0 1 41
1th) g =hth

Since the moments of the internal forces cancel in pairs, the second
member of “equation (8) contains only the sum-of the moments
of the impressed forces, which is denoted by L. Further ¢, +i¢,=1
is the moment of inertia of the system. Hence we have the
moment equation in rotation,

@0 _
av 1%,=L.

By the process of integration employed in deriving (III), it is
readily shown that (IV) holds when the system of particles forms
a rigid body. Hence the

THEOREM. The product of the angular acceleration and the
moment of inertia of a rigid body with respect to an axis about which
it 18 rotating 18 equal to the sum of the moments of the tmpressed
Jorces with respect to that axis.
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111. Comparison of formulas in translation and rotation.

Rotafion
Translation / P
R
Uniform Translation. Uniform Rotation.
v =, 0 = a,
8= 80+vot. 0= 0°+wot.
Uniformly Accelerated. Uniformly Accelerated.
v=v,+ M, o= o, + o,
8=128,+ vyt + 3 1. 0=10,+ oyt + } .
J =acceleration. a= angul;u' acceleration.
K.E.=4 M2, K.E.=} 1o
Force Equation Moment Equation
ds d?0
m=—z="F. I ¥7 L.
Hence, to change formulas in
Translation to Rotation
Replace linear velocity by angular velocity.
Replace linear acceleration by angular acceleration.
Replace mass by moment of inertia.
Replace distance by angle.
Replace force by moment of force.

112. Fundamental equations for uniplanar motion. It has been
shown (Art. 105) that uniplanar motion may be regarded as com-
pounded of a translation with the velocity of an arbitrarily chosen
point O, and a rotation about an axis through O perpendicular to
the directing plane. If for the point O we chose the center of
gravity, the motion of translation is determined by the force
equations (I). The motion of rotation is determined by the
moment equation (I'V), and since the angular velocity is the same
for all axes, the choice of the axis is arbitrary. Hence the funda-
mental equations for uniplanar motion are
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0 ax _ ¢y _
M a6 - Feo M an = Fye (Force Equations)
I % =L. (Moment Equation)

CONN Work done by all impressed forces
= change in kinetic energy.
(Energy Equation)

{ K.E. = }Mv? + }I,0%

In equations (V) the point (z, ) is the center of gravity of the
body, v, is the velocity of the center of gravity, I, is the moment
of inertia with respect to the gravity axis perpendicular to the
directing plane, L is the resultant moment of all the impressed
forces with respect to any axis perpendicular to the directing
plane, and I is the moment of inertia with respect to the same
axis.

_éwal’.'t— AR Ae 2UL-LH
1. Compound Pendulu A heavy body is suspended on a horizontal axis
and swings under the action of weight. Determine the motion.

Solution. Let_@' be the extreme position of the center of gravity, Go be
the lowest position of the center of gravity, and G be any position of the center of
gravity. Consider the motion from G’ to G.

From (2), Art. 109,
R.E. = } 402,

where I, is moment of inertia about the axis of sus-
pension, and w is the angular velocity when the center
of mass is at G.

The work done by weight when the center of
mass falls from__G_'_' to G is

Work done = mg - MN.
But MN=AN-— AM= AGcosd— AG cos a.

IL:{STRATIVE EXAMPLES

Let AG = AR =d,
. Work = mg . d(cos 6§ — cos &).”
By the energy equation,

mg - d(cosf —cosa) =3} [
Hence wl= 2——L”} 4 (cos 6 — cos ).
4
Differentiating with respect to ¢, since w = g—f,

2«:@:2—}7——"' ’d(—sinog)- 4
de I4 o dt
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After division by w = Z—:-, this equation becomes

a0 | mgd
—_— 8in 8 = 0.
n + 7 n 0.

This agrees with (6), Art. 68, if | b—‘f

Hence the .
TaeoreM. A compound pendulum moves precisely Hke a simple pendulum
whose length i3 given by the formula |l = 1{1—:1
The corresponding simple pendulum is called the equivalent simple pendulum.

2. A homogeneous circular cylinder of mass M and radius », rotating about its
axis g times per second, falls from rest through a vertical distance of A feet under
the action of its weight. Compute the total kinetic energy.

Solution. The cylinder is executing uniplanar motion and hence the kinetic
energy is given by (V). The moment of inertia of the cylinder with respect to ita
axis is I, = § Mr3. The angular distance moved in one second is 2 ra radians.
Hence w=2 ax. The kinetic energy of translation is found at once from the
energy equation to be

§ Mv* = Mgh.
Applying (V),

KE. = }-} M (2ar)? + Mgh.
s K.E. = M (r%a?r? + gh).

In many problems involving a system of two or more connected
bodies acted upon by given external forces the motion may be
discussed by the previous methods if we take into account the
reactions due to the connections. From the fundamental equa-
tions thus obtained for each body the reactions or internal forces
may be eliminated and the motion determined. The process is
illustrated in the following example.

8. A cord passes over a smooth peg as shown in the figure. To one end of the
cord is attached a mass m, which falls vertically, and the other end is fastened to the
axle of a solid disk of mass M and radius R which rolls on & plane inclined at an

angle a to the horizon. Discuss the motion.

Solution. The motion of the system is known

T, if the acceleration of m is known. If T denotes
T  the pull of m on the string, then the resultant

2 m  force acting on m is mg — T. The forces acting
M on the disk are (1) the pull of the string T,

4 mg (2) the weight Mg, (8) the friction F at the
point of contact with the plane, (4) the normal

pressure N (not indicated in the figure) of the plane on the disk. The pressure
N acts normal to the plane at its point of contact with the disk. We suppose that
the friction is sufficient to prevent slipping. Then its point of application is the
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instantaneous center. Since at any instant this point is at rest, the work done by
the friction is zero. The work done by the normal pressure N is also zero.

Supposing that m starts from rest, moves tlirough a distance s, and acquires the
velocity v, the energy equation gives

) { mo? = (mg — Ts.
Applying the energy equation to M, we get (since v is the velocity of the cen-
ter of gravity of M)

2) $ Mv? + § Ljw® = (— Mg sina + T)s.
Now I,=§MR’,&ndw=%-
Hence It = § Mol
By substitution of this value (2) becomes

3) $ Mv?=(— Mgsina + T)s.
Adding (1) and (8) to eliminate the tension T, we have

) (3m+ 3 M)o®=(m — Msin a)gs.

In deriving equation (4) we added (in the second member) the work done
by all the forces acting on m and the work done by all the forces acting on M.
The work done by T and — T cancels; that is, for the system under consideration the
total work -done by the internal forces is zero. Hence for this system we have the

Treorem. The change in the total kinetic energy of the system is equal to
the work done by the external or impressed forces.

Differentiating (4) with respect to ¢,

(5) (m+}M)v%=(m—Malna)g§-
Since v = %’ , and g—: = [, equation (5) gives the acceleration of m, namely,
6 = (m — Msina)g,
© 4 m+§ M

To find the tension 7" we differentiate (1) with respect to ¢, cancel v = %-:, and
substitute the value of f = % from (6). The result is

1_m— Msin a) .

m+iM

The magnitude of the frictional force which is necessary to prevent slipping
may be found from the moment equation. Taking moments with respect to the
axig of the cylinder, the moments of the forces My, N, and T are zepo, and the
moment equation becomes

T=mﬂ—mf=mg(

&0
7 I-—=—F-.R.
™ an B
Since 0=2 then @01 _1,
P %R
Also I=} MR )

Substituting in (7), we obtain

- = _gm—MsinaQML
F R 2m+8 M
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PROBLEMS

1. A uniform cylindrical shot weighing 200 1b, is fired from a rifled gun with
a velocity of 1000 ft. per second. Find the total kinetic energy at the muzzle if it
rotates 26 times per second, the diameter of the shot being 6 in. What must be
the average pressure during the discharge if the length of the gun is 7 ft. ?

Ans. K.E, = [3#(26 x)? + 108] foot-poundals.
Pressure = } (K.E.) poundals.

2. A uniform circular disk rotates about an axis through its center perpendicu-
lar to its plane. The disk weighs 18 T. and its radius is 8 ft. (@) What is the
kinetic energy when it is revolving at the rate of 200 revolutions per minute ?
(b) What constant tangential force must be applied to a crank 18 in. long to give
the disk this speed from rest in 1 min.? (¢) If the disk lifts a weight of 2 T. through

10 ft., what part of its K.E. is lost ?
’ P Ans. (a) 1600%’ foot-tons, (c) 20 foot-tons.

8. A circular disk of mass m, is suspended by a horizontal axis passing
through its center. A flexible thread is wound around its exterior and carries a
mass m; attached to its free extremity. Show that the angular acceleration is

2 , where r = radius of disk. ‘What distance will m fall from rest in ¢
r(2 mg + my)
seconds ? Ane. h = _Mg?
my + 2

4. A solid cylinder rolls down an inclined plane whose inclinationis «. Show

that the linear acceleration of the center is constant and equal to § gsin a.

5. Compare the time of descent of the rolling cylinder in problem 4 with that
of a body which slides without friction. Ans. V3:V2.

6. Two equal particles revolve in a horizontal plane around a vertical axis at
distances @ and b. At what distance from the axis must both particles be placed
together in order that the K.E. may remain unchanged ? Ans. 13 = } (a® + b3).

7. A solid fly wheel weighs W Ib. and makes N revolutions per minute. Its
radius is r ft. and that of the axle ¢ in. If the frictional retarding force on the axle
is F units per pound, find the number of revolutions before stopping.

r2 N2
Ang, ZTE
"% 800 Feg
8. A sphere weighing 100 1b. rotates about a horizontal diameter, making
80 revolutions per minute. Find the K.E. Ans. 30 ;M foot- ds.

9. A solid sphere rolls down an inclined plane. Show that the acceleration
of the center is constant and equal to § g sin a.

10. Compare the times of descent of the cylinder (problem 4) and sphere
(problem 9). Ans. V16:V14.
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11. A uniform rod of length 2 a turns about a screw as in the figure. How
high will it rise if an angular velocity w about the axis ! is imparted to it ?

Ans. h:ea—"-".
6g

12. Show thag the acceleration of the center of a hoop rolling C =

down a hill is ¢ g sin .
13. Show that the acceleration of the center of a hollow C
sphere rolling down a hill is § g sin a. C 5

14. Compare the times of descent of a hollow and a solid g X
sphere rolling down an inclined plane. Ans. 6:V21.

15. Two bicyclists, riding exactly similar machines, coast
down a hill, starting with equal velocities at the top. Neglecting the forces of
friction and the resistance of the air, show that the heavier rider will reach the
bottom first.

16. A straight plece of uniform wire is stood vertically on end and allowed to
fall over. With what velocity does its extremity strike the ground ?

Ans. V8lg, 1 = length of wire.

17. A train of T tons descends an incline of s ft. in length having a total fall
of A ft. What will be the velocity at the bottom, friction being p lb. per ton ?
1
Ans. v3=2gh — ——gps.
9%~ Tooo 7P
18. A uniform cylindrical rod 6 ft. long, radius 2 in., and density 5, is
suspended so that it swings freely in a vertical plane about one end. It is dropped
from a position making an angle of 30° with the vertical. Find the K.E. and an-
gular velocity as it passes through the vertical position.
Ans. K.E.= 91(1 - ﬁ) foot-pounds, «? =g( _l/-§)
2 2 2 2
19. A homogeneous cylinder of mass M and radius @ can turn around its axis,
which is horizontal. A fine thread supporting a mass m is wound around it. Find
the angular velocity of the cylinder when m has descended a distance A.
Ans. ? = ﬁL
a® (M + 2m)
20. Show that a cylinder of altitude a and radius b rotating about its axis has

enough energy to raise a weight equal to its own through a vertical distance —t;i‘;-’ .

21. A sphere whose radius is a ft. rolls without sliding down an incline of

30°. If the mass of the sphere is m, find its velocity after rolling a distance s.
Find the time required to roll this distance. If the plane is 200 ft. long, what is the

- velocity of the center of the sphere at the bottom of the incline ? How far up an

incline of 46° would it run ? dns, w0 =0gs; =28, 2-1000g, 200,
7 by 7 NG
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22. A bowling alley has a return trough 60 ft. long with a slope of 1 ft. in 15 ft.
(a) Neglecting friction, discuss the motion of a ball
whose radius is 4 in. and mass 8 Ib. when allowed to roll
from rest at the higher end. (b) Suppose the trough is
triangular and the angle 90°. The ball then rolls on two
points on it sides: Discuss the
motion.

dns. (o) f=f, @) f=F

28. Two masses m; and ms (m; >ms) hang over a
smooth pulley by means of a flexible, inelastic thread whose
mass can be disregarded. Discuss the motion (a) leaving
out the mass ms of the pulley, (b) taking
account of the pulley’s mass.

24. A marble of radius a starting practically from rest at
the upper end of the vertical diameter, rolls off a sphere of
radius B. At what point will it cease to touch the sphere ?

Ans. After the center of mnass has descended a vertical
distance =17—7(R + a).

25. A uniform rod whose length is 2 b oscillates in a vertical plane about a
horizontal axis distant a from its center of mass. Find the length of the equivalent
simple pendulum. Find also the center of oscillation when the rod is suspended

from one end. Ans. 1=a+ R ; oc=*%s.
8a 3

268. A pendulum formed of a right circular cylinder of radius » and length A
oscillates about a diameter of one of its bases as a fixed horizontal axis. Find the
period. Ans. T=2x [3P+4R

6gh

27. Suppose the cylinder in problem 26 falls from the vertical position above
the point of support. What is its angular velocity when it has turned through an
angle of # =§»? What should be its angular velocity at the lowest point in order

that it may just rise to its original position ? Ans. o?=_18h9 . a_ 24gh |
: I TTRWY T L 3134 4n?

28. A circular lamina of radius r oscillates (a) about a tangent lying in its

plane, (b) about a line through the circumference perpendicular to its plane. Find
in each case the length of the equivalent simple pendulum. .
Ans. (a)l=}%r; ) I=1r.

29. A cube whose edge is ¢ swings as a pendulum about a horizontal edge.
Find the length of the equivalent simple pendulum and the period.
Ans. 1=3aV2.

30. A circular arc oscillates about an axis through its middle point perpendic-
ular to its plane. Show that the equivalent simple pendulum is independent of the
length of the arc and equal to twice the radius,
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81. A given sphere has a radius of 6 in. If the axis of revolution is a hori-
zontal tangent, find the moment of inertia and show that the length of the equiva-
lent gimple pendulum is 8.4 in.

82. A right circular cone of height A and radius r oscillates about a horizontal
axis perpendicular to its own axis at the vertex. Show that the length of the

equivalent simple pendulum is 4—’%"*"—'3

88. A square whose side is g oscillates about & horizontal axis perpendicular
to its plane. How far from the center of the square is this axis when the period has
& minimum value ? Ans. &

vh

84. Find the axis about which an elliptic lamina must oscillate that the time of
an oscillation may be a minimum,

Ans. The axis must be parallel to the major axis and bisect the semiminor axis.

85. A heavy disk weighing W lb. is set in motion by a
weight P as indicated in the figure. The radius of the disk is a
and that of the axle is b. The mass of the axle may be disregarded
in comparison with that of the disk. (a) What is the angular
velocity of the disk when P has descended A ft.? What time is
required ?

36. A cord passes over a smooth peg as shown in the figure,
To one end of the cord is attached a mass m which falls
vertically, and the other end is fastened to the axle of
a solid cylinder of mass M and radius R which rolls on
a horizontal plane. Find the acceleration of m and the

™ frictional force. Ans. f=—™ .
m+§M

87. In problem 36 suppose M is a solid sphere.

88. In problem 86 suppose M is a hollow sphere.

89. A cord passes over a smooth peg as shown in the figure. To one end of
the cord is attached a mass m which falls vertically and
the other end is wrapped around a solid cylinder which
rolls on a horizontal plane. Find the acceleration of m.

Ans. f:—mL
m+§M

40. In problem 89 suppose M is a hollow cylinder of negligible thickness.

41. Suppose the cylinder of problem 86 rolls on a
plane whose inclination is «. Find the acceleration of m

and the frictional force. A (m — Msin @)g
ns. .
m+ M

42. In prob.lem 41 suppose M is a solid sphere.
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43. In problem 41 suppose M is a hollow sphere,

4. Supposé the cylinder of problem 39 rolls on a plane
whose inclination is . Find the acceleration of m.
Ans. §2m—l!lsinagg__
e m N
45. In problem 44 suppose M is a hollow cylinder of
negligible thickness.

46. In problem 41 suppose m and M given. Determine the inclination « so
that the acceleration of m is zero. Ans. sina=".
M
47. Two masses m and m’ suspended from a wheel and axle do not balance.
The radius of the wheel is a, and that of the axle is 5. Show that the acceleration
of mis {M&—m'0)ag oyere 7 is the moment of inertia of the machine about its
ma? + m'b? 4+ I
axis.

48. The handle of a wheel and axle is let go just as a bucket full of water
weighing 60 1b. reaches the top of a well 18 ft. deep, and the bucket gets to the
bottom again in 6 sec. If the axle is 6 in. in diameter, find the moment of inertia
of the wheel and axle. Ans. 116.25.

49. A prism whose cross section is a square, each side being @, and whose
height is A, oscillates about one of its upper edges. Find the length of the equiva-
lent simple pendulum, Ans. §Va® ¥ B8

50. A uniform cylinder has coiled around its central section a light, perfectly
flexible string. One end of the string is attached to a fixed point, and the cylinder
is allowed to fall. Show that it will fall with acceleration § g.

61. An elliptic lamina swings about a horizontal axis which passes through
one focus, is perpendicular to the major axis, and lies in the plane of the ellipse.
The other focus is the center of oscillation. Prove that the eccentricity is §.

562. Two smooth planes are placed back to back, as
shown in the figure. The body M, slides down the plane
of inclination e, and by means of a cord passing over a
pulley of mass M; draws the cylinder of mass M up the e
plane of inclination as. Supposing the cylinder rolls 1
without slipping, determine the accelemtion.—m 2 g( M, sin ag — M, sin ezg)
- M +2M;+3M;




CHAPTER XIII
EQUILIBRIUM OF COPLANAR FORCES

113. Equilibrium of forces. If a system of forces acting upon
a body produces no change of motion, the forces are said to be in
equilibrium ; and if the body is initially at rest, it will remain at
rest under the action of a system of forces in equilibrium. The
part of mechanics which deals with systems of forces in equilib-
rium is called statics. Assuming that the body is initially at rest,
the problem of statics is the determination of the conditions upon
the forces acting in order that the body shall remain at rest.

114. Analytic conditions for equilibrium of coplanar forces.
Consider a uniplanar motion with the following characteristics :
(a) the center of gravity moves in a straight line with constant
speed; (8) the angular velocity remains constant. Referring to
the fundamental equations ((V), Chapter XII)

Bz
Mzt—z = F;’
) uIY-F,
0 _
aa= b
Y 0 _
then by the hypothesis (a) §7 Rl 0, and by (8) aa 0.

Hence for the motion described
¢)) F, =0, FV=O,L=0,

that is, the sum of the axial components of all forces acting is zero,
and the resultant moment with respect to the origin of all forces act-
ing also vanishes.
Next assume a system of coplanar forces (that is, whose lines
of action lie in a plane) such that equations (2) are satisfied.
245
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Suppose these forces act upon a rigid body whose previous motion
(t = 0) possessed the characteristics (a) and (3), assuming that the
directing plane is parallel to the plane of the forces. Then, since
by (1) we have to integrate
&z & a20

it is clear that the center of gravity will continue to move uni-
formly in a straight line, and further that the angular velocity
will be unchanged. Hence the motion i entirely unchanged. It is
also clear that such a system of forces will not disturb the body if
it is initially at rest.

Hence, the

THEOREM. A system of coplanar forces i in equilibrium if and
only if (1) the sum of the X-components of all the forces is zero, (2)
the sum of the Y-components of all the forces is zero, (3) the sum of
the moments with respect to the origin of all the forces ts zero.

If the forces be denoted by F,, F,, --- F,, the angles which
their lines of action make with the X-axis by e, ay, -+ @,, and
the lever arms with respect to the origin by d,, d, --- d,, the con-
ditions for equilibrium may be written

F,= Fycose; + Fycosay + --- F, cos a, =0,
©)) Fy = Fsine; + Fysinay + - F,sina, =0,
L = Fd, + Fyd, + - Fd,=0.

The first two equations are the conditions that the acceleration of
the center of gravity shall be zero, and the third is the condition
that the angular acceleration shall be zero.

Since any point in the plane may be chosen for the origin and
since any line through the origin may be taken for the X-axis, we
see that if a system of forces is in equilibrium, (a) the sum of the
components in any direction is zero, (5) the sum of the moments
with respect to any point is zero. And conversely, if (a) and (5)
are satisfied, the system is in equilibrium.

From (8) we may deduce other forms of the conditions of
equilibrium which are convenient in applications.



EQUILIBRIUM OF COPLANAR FORCES 247

1. A system of forces is in equilibrium if the sum of the compo-
nents along any two intersecting (not coincident) straight lines is zero,
and the sum of the moments with respect to one

origin 8 zero. Y

Proof. The second part of I is the con- 4
dition L = 0. To prove the first part, let the
two lines be OX and OA, and denote the angle
XO0A by B. The sum of the components B _
along OX is 0 X

@ Fycos e, + Fycos ay + - F,cosa,=F,=0.
The sum of the components along 0A is
(5) Fycos (ey— B) + Fycos (ag — B) + -+ Frcos (&, — B) = 0.
Equation (5) may be written in the form
F, cos e, cos B + F, sin a, sin B + F, cos a, cos 8 + F, sin a, sin B
+ .- F,cos a, cos 8 + F, sin a, sin 8 = 0.
Since ¥, = Z F;cos e, F, = Z F;sin &, this equation becomes
F,cos /3 + F,sinB=0.
Since by (4) F.=0 and 8=+ 0 by hypothesis, this equation gives
F,=0.

Hence (4) and (5) are equivalent to the first two of equa-
tions (3). Q.E.D.

II. A system of forces is in equilibrium if the sum of the moments
is zero for each of two origins, O and C, and the sum of the com-
ponents 18 zero in any direction not perpendicu-

lar to OC.

.‘gc’ Proof. Take the point O for origin of

coordinates, and the X-axis parallel to the
direction of resolution.

Let the point of application of F, be
(z,,9)- Then (Art. 62),

) moment of ¥, with respect to 0 = L, =

z,F sina, — y, F, cos a,,
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and similarly,
) moment of ¥, with respect to C'(3, ¢) =
(z, - b)F,sina, — (y, —c)F,cosa, =
L, — bF, sin a, + cF| cos a,.
Hence by summing up, if L = sum of moments with respect
to O, we shall have, using (8),
(8) Sum of moments with respect to '= L — bF, + cF.,.

This vanishes by hypothesis. Also L = 0, F, =0 by hypothesis.
Hence F, =0 and (3) hold. Q.E.D.

III. A system of forces is in equilibrium tf the sum of the
¥ moments t8 zero for each of three origins not

on the same straight line.
',gc, Let the three centers of moments be 0(0, 0),
A(a, 0), and C(b, ¢). Then if the moments
of the force F, are, respectively, L,, L;, Lj, °
0 %% We shall have
a0

L, = zF, sin a; — y,F; cos a,,
L{= (2, — a)F,sin a; — y,F, cos a; = L, — aF| sin a,,
L] =(z,—b)F,sina,— (y,—¢)F,cosa,=L,—bF, sin a, +cF, cos a,.
Summing up for all the forces, and denoting these sums by L, L',
L", then, using (3),

L'=L-aF, L'=L-bF,+cF..

The hypothesis L = L' = L'' = 0 leads to the condition ¥, = 0,
F,=0. Q.E.D.

In any problem of statics either I, II, or III may be used.
The choice depends upon the convenience for the particular
problem.

A special condition which ig important in the applications may
be derived when the number of forces is three. Let the forces be
denoted by F,, F,, and F,. There are two cases to be considered.

(1) Suppose the lines of action of ¥, and F, intersect in the
point 0. Taking moments with respect to O, we have

moment of ¥} = moment of F, =0,
and, for equilibrium, ;

moment of F; + moment of ¥,+ moment of ¥F3=0.
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Hence moment of Fy=0, which means that the line of action of
Fy must pass through O. The first two conditions of equilibrium
(8) simply assert that the vector sum of the three forces is zero.

(2) Suppose the lines of action of F; and F, are parallel. Let
the axis OX be parallel to the lines of action of F, and F;. Tak-
ing components in the direction of the ¥-axis, we have

Fyy=Fy =0,
and, for equilibrium,
Hence Fy, =0, which means that Fy is parallel to the X-axis.
Hence the

THEOREM. If three coplanar forces are in equilibrium, their
lines of action are concurrent or parallel and their vector sum is zero.

115. General method of solving problems in equilibrium. The
general problem of equilibrium of a system of forces is the follow-
ing: given a body or system of bodies acted upon by a system of
forces of which some are known, to determine the unknown forces
so that the system is in equilibrium. For the solution we have
the three conditions of equilibrium as expressed by I, II, or III
and such geometric conditions as may be implied in the statement of
the problem. Most problems of statics can be solved in different
ways and the best method is to be found only by experience.
The general method of procedure is indicated in the following
steps: :

(1) Draw a figure showing the body acted upon and represent
by vectors all the forces acting.

(2) Enumerate all the forces acting, specifying the magnitude
and direction of each so far as known.

(8) Write the three conditions of equilibrium, using I, II, or
I1I to make the equations as simple as possible.

(4) If the equations of equilibrium are sufficient to determine
the unknown quantities, solve them.

(5) If not, write as many equations as possible from the
geometric conditions.

(6) If the problem is determinate, the number of static and
geometric equations is sufficient to determine the unknown quanti-
ties by algebraic solution.
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ILLUSTRATIVE EXAMPLES

1. A heavy uniform rod, 4B, is fastened at A with a smooth hinge and is sup-
ported in a horizontal position by a string attached at B and making an angle
with the horizon. Determine the tension in the string and the magnitude and
direction of the force exerted by the hinge.

Solution. Following the steps indicated above we
(1) draw the figure.

(2) The forces acting on the rod are three : (i) the
known weight W acting downwards at O, the middle
point of 4B, (ii) the tension T of unknown magnitude,
acting at B in a direction indicated by the angle e, (ili) the force P of the hinge at
A4, unknown in magnitude and direction.

(8) Since the number of forces is three, we may conclude from the theorem of
Art. 114 that DB and FA intersect in a point £ vertically under O. This deter-
mines the direction of the force P, since the angle FAO is » — .

Resolving the forces in directions parallel and perpendicular to OB, we have

1 Tcos ¢ — Pcosa =0,
M Tsina 4+ Psina— W =0.

The moment equation has been used in applying the theorem of Art. 114.

(4) Thesolution of equations (1) gives T=P = -‘21’ cosec o.

2. A uniform rod AB rests with the end 4 against the corner of a smooth *
horizontal floor and a smooth vertical wall. At the end B two strings are attached
of which one is fastened to a point C in the wall. The
other passes over a smooth peg at D in the floor, making
ABD a right angle, and supports a weight 7. The weight
of the rod is W pounds and the tension in BC is F pounds.
Determine the weight 7" and the pressures at A.

Solution. (1) In the flgure the middle point of AB
is the center of gravity of the rod, « is the inclination of
Ab to the horizon, and g8 is the inclination of BC to the
horizon.

(2) The forces acting on the rod are five in number: (i) the weight W acting
downwards at the middle point of 4B, (ii) the known tension F in BC, (iii) the
tension T in BD, unknown in magnitude, (iv) the pressure P, of the vertical wall
at A, unknown in magnitude, (v) the pressure P; of the floor at 4, unknown in
magnitude.

(8) For the equations of equilibrium we shall use II. Resolving in & horizontal
direction,

(¢)) — FcosB + P, + Tsin ¢ = 0.
Taking moments about 4 and denoting the length of the rod by I,
— 4} Wicosa — T+ Flsin (e + 8) =0,

* A surface is defined as smooth if it can exert pressure only in the direction of the
normal to the surface.
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or,
(2) — 4§ Wcosae— T+ Fsin(a+8) =0.
Taking moments about B,
4 Wicosa — Pslcos o + Pilsina =0,
or,
3) $ Wcosa — Pycos @ + Pisine =0.

(4) The three equations of equilibrium are sufficient to determine the three un-
known quantities P,, Py, and 7. From (1), (2), and (8) we find

T = Fsin (& +8) — 4 Wcos .
Py = [Fcos(«+8) + % Wsina]cose.
P; = Fcos (a + B) sina+ § W (1 + sin? ).

8. A light rigid rod rests partly within and partly without a hemispherical
smooth bowl, which is fixed in space. A weight W is clamped on to the rod at a
point C within the bowl. Determine the position of equilibrium and all forces act-
ing on the rod. A

Solution. (1) The figure represents a section cut ;
from the bowl by the vertical plane determined by the D,
center O and the rod AF. The position of equilibrium
is known if the inclination 8 of AB to the horizontal is
known,

(2) The forces acting on the rod are three in number: (i) the weight W acting
downwards at C, (ii) the unknown pressure P, of the surface of the bowl at A,
acting in the direction of the normal, (iii) the unknown pressure P; of the edge of
the bowl at B, acting in a direction perpendicular to AF.

(8) For the equations of equilibrium we shall use I. Resolving in a horizontal
direction,

'¢)) — Pysin6 + Pycos¢ = 0.
Resolving in a vertical direction,
(2) Pyco86 + Pising — W=0.

Taking moments about 4, denoting the known distance AC by I and the unknpwn
distance AB by z,

3 — Wicosd + Pyx =0.
(4) The unknown quantities in (1), (2), and (8) are P,, P, 6, ¢, and . Hence
we require some geometric conditions.

(6) Since the curve DAB is a semicircle, the normal at A passes through O
and it follows that ¢ =26, Also, since AB is a chord of the circle,

AB =2 =2rcosé,
where r denotes the radius.

(6) Substituting the values of ¢ and z in (1), (2), and (8), respectively, we
obtain

4) P;sin 6 — Pycos20 =0,
(5) Pycosf + P1sin26 = W,
(O] 2rP,—- Wil =0.
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Solving (4), (6), and (8), we find
cosp =t V32r3+ B
8r '

Py = Wtano, P,=21%
2r

It may be remarked that the angle of equilibrium does not depend on the mag-
nitade of the weight attached to the rod.

PROBLEMS

1. A rod AB is binged at 4 and supported in a horizontal position by a
string BC making an angle of 45° with the rod. A weight of 10 lb. is suspended
from B and the weight of the rod may be neglected. Find the tension in the string

and the force at the hinge. Ans. 10v2, 10 1b.

2. A wheel capable of turning freely about a horizontal axis has a weight of
2 lb. fixed to the end of a spoke which makes an angle of 60° with the horizon.
What weight must be attached to the end of a horizontal spoke to prevent motion
taking place ?

8. Two weights, P and @, rest on a smooth double inclined plane as shown in
the figure, and are attached to the extremities of a string which passes over a smooth
peg O at a point vertically over the intersection of the planes, the peg and the
weights being in a vertical plane. Find the position of equilibrium.

Ans. The position of equilibrium is given by the equations
sing_ o sing
P cos @ Q cos ¢’

cosa  cosf_ 1
sind  sing A’

where 7 is the length of the string and A = CO.

4. A bar of mass 15 lb., whose center of gravity is at its middle point, rests
with its ends upon two smooth planes inclined to the horizon at angles of 86° and
46° respectively. Determine the inclination of the bar to the horizon when in
equilibrium, and the pressures exerted upon it by the supporting planes.

Ans. 10° 89/, 8.93 1b., 10.74 Ib.

6. A uniform rod 16 in. long and weighing 12 1b. has a weight of 10 Ib.
suspended from one end. At what point must the rod be supported that it may just
balance ? Ans. 4¢; in, from the weight.
6. Prove that three forcesacting at the middle points of the sides of a triangle

perpendicularly inwards, and proportional to the lengths of the sides, are in
equilibrium.

7. Extend the theorem of problem 6 to a plane polygon of any number of
sides.

8. ABCD is a plane quadrilateral, P and Q are the middle points of the oppo-
site sides AB and CD, and O is the middle point of PQ. Prove that the four forces
represented by 04, OB, OC, OD, respectively, are in equilibrium.
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9. A uniform beam of weight W and length 3 ft. rests in equilibrium with its
upper end A against a smooth vertical wall, while its lower end B is supported by a
string, 6 ft. long, whose other end is attached to a point C in the wall. Find AC

and the tension in the string. Ans AO=-4—-ft T=5L§W
vi 8

" 10. ABCD is a plane quadrilateral. Forces act along the sides 4B, BC, CD,
DA, measured by a, 8, v, 5 times those sides respectively. Show that if these forces’
are in equilibrium, then ay = g8.

11. A bar AB, whose center of gravity is at its middle point and whose mass
is 12 1b,, is supported in a horizontal position by strings attached to the ends, and
sustains loads of 16 1b. and 20 Ib. at 4 and B respectively. If the string at 4 is in-
clined 456° to the horizon, what is the inclination of the string B? Find the tensions
in the strings. Ans. 49° 47', 81.12 1b., 84.05 Ib.

12. Three smooth pegs A, B, C stuck in a wall are the vertices of an equilateral
triangle, A being the highest and the side BC horizontal. A light string passes once
around the pegs and its ends are fastened to a weight W which hangs in equilibrium
below BC. Find the pressure on each peg.

18. A weightless string is suspended from two fixed points and at given points
on the string equal weights are attached. Prove that the tangents of the inclina-
tions to the horizon of different portions of the string form an arithmetic progression.

14. A uniform yardstick weighing 10 oz. is supported in a horizontal position
by the thumb at one end and the forefinger at a point 3 in. from the end. What is
the pressure on the thumb and on the finger ? Ans. 50 oz., 60 oz.

16. A beam AB weighing } T. per running foot and 18 ft. long is loaded with
4T at Aand 6 T. at B. It is supported at points 4 ft. from A4 and 6 ft. from B.
Find the supporting forces P and Q. Ans. P=5§T., Q =12} T.

16. A uniform rod of weight 50 1b. and length 18 ft. is carried on the shoulders
of two men who walk at distances of 2 and 3 ft., respectively, from the two ends. A
weight of 50 lb. is suspended from the middle point of the rod. Find the total
weight carried by each man.

17. A uniform plank 20 ft. long, weighing 42 1b., is placed over a rail, and two
boys weighing 76 and 99 1b., respectively, stand each at a distance of 1 ft. from each
end. Find the position of the plank for equilibrium.

Ans, 1 ft. from the middle point.

18. Two equal weights, P, @, are connected by a string which passes over two
smooth pegs A, B, situated in a horizontal line, and supports a weight W which
hangs from a smooth ring through which the string passes. Find the position of

_ equilibrium. w . AB.
Ans. The depth of the ring below the line AB isz——'\/ i

19. A light rod rests wholly inside a smooth hemispherical bowl whose radius
is r, and a weight W is clamped on to the rod at a point whose distances from the
ends are ¢ and b. Show that, if ¢ be the inclination of the rod to the horizon in the
position of equilibrium, then »

a —

sinf =———.
2vVri—abd
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20. Two weights, P and @, rest on the concave side of a parabola whose axis is
horizontal, as shown in the figure, and are connected by a light string, of length I,
which passes over a smooth peg at the focus F. Find the posi-
tion of equilibrium.

Ans. If 6 is the angle which FP makes with the axis, and
4 m is the latus rectum of the parabola, then

oot ] = PVi-2m )
2 V(P4 QP

21. In problem 20 show that the depths of the weights below the axis are pro-

portional to their masses.

22. A particle is placed on the convex side of a smooth ellipse, and is acted
upon by two forces F and F', towards the foci, and a force F¥/, towards the center.
Find the position of equilibrium,

,» Where # is the distance of the particle from: the center of the

F-F
=

Ans. r=

1—nd
ellipse, b is the semiminor axis, and n =

116. Friction. A smooth surface is defined as one which can
exert upon a body in contact with it only a pressure in a direc-
tion normal to the surface. Such surfaces do not exist in nature.
Suppose a heavy box is at rest upon a horizontal table. If the
table were smooth, the box could be moved by any horizontal
pull, the acceleration being, by Newton’s Second Law of Motion,
directly proportional to the force and inversely proportional to
the mass of the box. Experiment shows, however, that this is
not true. If the horizontal pull is slight, no motion ensues, and
consequently the forces acting on the box are in equilibrium.
The forces acting are three in number: (i) the weight acting
vertically downwards, (ii) the horizontal pull H, and (iii) the
pressure of the table. From the principles of equilibrium it
follows that the pressure of the table must be made up of two
components, of which one, numerically equal to the weight, acts
. vertically upwards, while the other is numerically equal to H but
opposite in direction. A rough surface can exert upon bodies in
contact with it a pressure made up of (1) a component normal
to the surface called the normal preamre,’;ﬂd (2) a component
tangent to the surface called the friction. All physical surfaces
are more or less rough.

Our knowledge of frictional forces is obtained by experiment
and is expressed in the following
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LAws or FricTION. 1. If the body is in equalibrium, the fric-
tion 18 equal and opposite to the tangential component of the applied
Jorces. In the preceding example there is no friction if there is
no horizontal pull.

2. No more than a certain amount of friction can be called into
play. The value of the friction when sliding is just about to take
place is called the limiting friction.

3. The magnitude of the limiting friction bears a constant ratio M. = Z
to the mormal pressure. This constant ratio, w, is called the K
coefficient of friction, and its value depends upon the nature of

the surfaces in contact. '

4. The coefficient of friction i3 independent of the area of contact
of the two bodies if the louching surfaces are uniform in character.
The angle of friction, \, is defined by (Aft_g'l)

tan A = u. ’ '

The coefficient of friction for various substances has been
determined by experiment and some of the results are given in
the following table of values for u:

Wood on wood, dry . . . . . . . 0.256 to 0.6
Wood on wood, soaped . . . . . . 0.2

Metals on oak, dry . . . . . . . 0.5 to 0.6
Metals on oak, wet . . . . . . . 0.24 to 0.26
Metals on oak, soaped . . . . . . 02

Leather on oak, wet or dry . . . . . 0.27 to 0.36
Metals on metals, dry = . . . . . . 0.16 to 0.2
Metals on metals, wet . . . . . . 0.3

Smooth surfaces, occasionally lubricated . . . 0.07 to 0.08
Smooth surfaces, thoroughly lubricated . . . 0.03 to 0.036

The values of u given above are the coefficients of static fric-
tion as defined in 8. The coeflicient of dynamic friction (see
Art. 67) is slightly less in numerical value than the coefficient of
static friction. )

ILLusTRATIVE ExaMPLE. A uniform rod rests with one end on a rough hori-
zontal floor and the other against a rough vertical wall. Supposing the coefficient

of friction to be the same at both ends, determine the least inclination it can make
with the horizon.
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Solution. (1) In the figure, AB is the rod which is just about to slide down.

(2) The forces acting on the rod are five in number: (1) the known weight W
acting vertically downwards at C, (ii) the normal pressure R of the floor, unknown
in magnitude, acting vertically upwards at 4, (iii) the friction at A4, of magnitude
#R and acting in the direction 4D, (iv) the normal pressure
R' of the wall at B, unknown in magnitude, (v) the friction
wR' at B acting vertically upwards.

(8) For the conditions of equilibrium we shall use I,
Art. 114. Resolving in a horizontal direction,

@ R' = uR.
Resolving in a vertical direction,
@ R+uR' =W.

Taking moments about 4, and denoting the length of the rod by I,

} Wicos@ — uR'lcos 6 —R'lsin 6 = 0,
or,

3 4 Wcosd = R'(ucosd + s8ig 0).
4) From equations (1), (2),and (3) we eliminate R and R’, and solve for 8.
The result is 1—ud
tan 0 = ——.
I
‘ PROBLEMS

1. A body of mass W pounds is at rest upon a plane making an angle ¢ with
the horizon. A cord attached to this body runs parallel to the plane, passes over a
smooth pulley, and sustains a weight of P pounds. Determine the magnitude and
direction of the friction, the normal pressure, and the total pressure exerted by the
plane upon the body.

2. In problem 1 let W =50 1b., P=40 lb., 6 = 32°, and suppose the body is
just about to slide up the plane. Determine the coefficient of friction.
) Ans. u = 0.818.

8. The roughness of a plane of inclination « is such that a body of mass W
can rest on it. Find the least force required to draw the body up the plane.
Ans. W sin2 a, inclined at an angle & to the plane.

4. A uniform beam rests with one end on a rough horizontal plane and the
other against a rough vertical wall, and, when inclined to the horizon at an angle
of 30°, is on the point of slipping down. Supposing that the surfaces are equally
rough, determine the coefficient of friction. A _ L

ns. p= 73

6. A body of 30 lb. mass, resting on a plane inclined 46° to the horizon, is pulled
horizontally by a force P. If the coefficient of friction is 0.2, between what limits
may the value of P vary and still permit the body to remain at rest ? :

Ans. 20 and 45 1b.

6. On a rough plane of inclination 6 the greatest value of the force acting along
the plane and producing equilibrium is double the least, What is the.coefficient of

friction ? Ans. p=}tan#.
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7. If the angle of friction is 80°, what is the least force which will sustain a
weight of 100 1b. on a plane whose inclination is 60° ? Ans. 650 1b.

8. A ladder inclined at an angle of 60° to the horizon rests with one end on a
rough pavement and the other against a smooth vertical wall. The ladder begins
to slide down when a weight is put at its middle point. Show that the coefficient of

friction is %‘ .

9. A uniform ladder weighing 100 1b. and 50 ft. long rests against a rough
vertical wall and a rough horizontal plane, making an angle of 45° with each. If
the coeflicient of friction at each end is §, how far up the ladder can a man weigh-
ing 200 Ib. ascend before the ladder begins to slip ? Ans. 47 ft.

10. A heavy body is placed on a rough plane whose inclination to the horizon
is arc sin §, and is connected by a string passing over a smooth pulley with a body
of equal weight which hangs freely. Supposing that motion is on the point of ensu-
ing up the plane, find the inclination of the string to the plane, the coefficient of
friction being 0.6. Ans. 6 =2 arctan §.

11. Two weights rest on a rough inclined plane and are connected by a string
which passes over a smooth peg in the plane. If the angle of inclination « is greater
than the angle of friction ¢, show that the least ratio of the less to the greater is
sin (e —¢)/sin (a + ¢).

12. Two equal weights are attached to a string laid over the top of two inclined
planes, having the same altitude, and placed back to back, the angles of inclination
of the planes being 80° and 60° respectively. Show that the weights will be on the
point of moving if the coefficient of friction between each plane and weight be

1

2+ V3

13. A body is supported on a rough inclined plane by a force acting along it.
If the least magnitude of the force, when the plane is inclined at an angle a to the
horizon, be equal to the greatest magnitude when the plane is inclined at an angle
B, show that the angle of friction is §(a — B8).

14. A cubical block rests on a rough plank with its edges parallel to the edges
of the plank. If, as the plank is gradually raised, the block turns over on it before
slipping, what is the least value of the coefficient of friction ?

15. It is observed that a body whose weight is known to be W can be just sus-
tained on a rough inclined plane by a horizontal force P, and that it can also be
just sustained on the same plane by a force Q up the plane. Express the angle of
friction in terms of these known forces. PW

QVPE+ W3
18. It is observed that a force @, acting up a rough inclined plane will just
sustain on it a body of weight W, and that a force @, acting up the plane will just
drag the same body up. Find the angle of friction.
Ans. x=arcsin__9___9__3" 1_.
2VW3— Qi1Qs

.Ans. \ = arc cos
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17. A heavy uniform rod rests with its extremities on the interior of a rough
vertical circle. Find the limiting position of equilibrium.
Ans. 1f 2 o is the angle subtended at the center by the rod, and A\ the angle of
friction, the limiting inclination of the rod to the horizon is given by the equation
8in 2\ .
T coB2\ +cos2a

18. An insect tries to crawl up the inside of a hemispherical bowl of radius a.
How high can it get if the coefficient of friction between its feet and the bowl is § ?

19. Two equal rings of weight W are movable along a curtain pole, the coeffi-
cient of friction being u. The rings are connected by a loose string of length 7, which
supports by means of a smooth ring a weight W;. How far apart must the rings be
80 that they will not come together ?

117. Equilibrium of flexible cords. It is assumed that the
cords discussed in this article are inextensible and perfectly
flexible. The cross section is supposed to be small so that we
may consider the curve formed by the cord. For a perfectly
flexible cord in equilibrium it is evident that the resultant force
at any point must act in the direction of the tangent to the curve
formed by the cord. We wish to investigate the form of the
curve assumed by a cord which is fastened at both ends and which
sustains a weight distributed according to a given law. Since
the cord is in equilibrium it is evident that, if any segment be
replaced by a rigid wire of the same shape and bearing the same
load, the system would still be in equilibrium. In order to deter-
mine the form of the curve we may
consider any segment and_treat it as a
T; rigid body.

Let the plane of the cord be the X'Y-
plane with the Y-axis directed vertically
upwards, and 1 e a function (of the
codrdinates or length of arc) represent-
ing the distribution of weight along the
cord. Consider any segment P, P,.

This segment is in equilibrium under the action of three forces :
(i) the tension 7, directed along the tangent to the curve at P,;
(ii) the tension T, directed along the tangent at Py; (iii) the
weight W acting vertically downwards at C, the center of gravity
of the load of the segment. The weight W along the segment
PP, is the difference of values of the function  at P; and P,,
that is W= o, — ;.

)
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Let ;ﬁl and ¢, denote the inclinations of the tangents to the curve
at P; and P, respectively. Resolving in a horizontal direction,

@) T, cos ¢, = T, cos ¢,.
Resolving in a vertical direction,
®)) Tysin ¢, = T} sin ¢, + W.

shows that the horizontal component of the tension is the same at
every point of the curve, and this is evidently equal to the tensio
at the lowest point. ‘Denoting the constant horizontal component
of the tension by H, we have, from (1),
H W
T, =—"2_,7T= N e

1 cosgp,” "2 cos ¢ oM 95 75’
With these values of 7) and 7; we may write equation (2) in
the form

W w, — o
3 tan ¢,—tan¢l=z-[= —ZFJ\/

The function o is supposed to be known for every point of the
curve. If H and the slope ¢, at some one point P, has been
determined, equation (3) may be used to determine the slope ¢,
at any second point P,.

In order to determine the shape of the curve we must find the
differential equation which characterizes it. Let s denote the
length of arc measured from some fixed point on the curve, s, and
8, being the distances to P, and P, respectively. D1v1dmg both
members of equation (3) by s, — 8;, we have

tang, —tan¢, 1w, — o

4 2 ) Q— 2 1

@ b THy—

Since P; and P, are any points on the curve, equation (lz)

Now let P, approach P, along the curve. Then s, — 8, approaches
zero as a limit, the first member of equation (4) approaches

M, and the second member approaches — 1 do Hence the

ds H ds
differential equation of the curve is
®) d(tang) _ 1 dw

ds  Hds

When o is given, the ordinary equation of the curve is found
by integrating equation (5) and determining the constants by
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means of the initial conditions. In the following articles We con-
sider the two cases which are most important in applications.

118. The common catenary. The curve assumed by a heavy
cord or by a cord carrying a weight distributed uniformly along
the cord, is called a catenary. If w denotes the weight supported
by unit length of the cord, then

o = WS,
and the differential equation of the curve [(5), Art. 117] becomes
1e)) d(tand) _w ‘
ds H
Since tan ¢ is the slope of the curve we have (Calculus, p. 86)
=4,
. tan ¢ dz
Now,
d (dy
d dy) d(dy dz _ dz\dz 1 49
d( = ‘%)75——1_’_ = - (Calculus, p. 142)
T g |
oy __y = 2 2, —_—— e
Writing =P and 77 equation (1) becomes - r§¢ c
@) _dp _dr
V1i4p: ¢
Integrating,
® log (p + V1 +p3)=‘£+cl.

To determine the constant of integration ¢, we select the axes
so that the Y-axis passes through C, the lowest point of the cate-
nary. The distance of the origin below ¢ will

Y be determined later. Since the tangent to the
curve at C 1s horizontal, —}1 = p =0, when
c
¢ z=0. Hence ¢, =0, and equatlon (8) may
ol —x be written in the form

z X  af
p+VIigpi=c. . “—zfe%L =g]~"
Solving for p, . ) f .

[ _iz_ f_ T
\-p_dz_%(e 4 )"/
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Integrating, :
Cloer v oY
.'/=§(¢ +e )ty
We now determine the distance OC so that the constant of
integration ¢, is zero. If, when z =0, y = OC = ¢, then ¢; = 0.
Hence the
THEOREM. The equation of the catenary is

O y=5( +e°)

where ¢, the intercept on the Y-azis, 18 the ratio of the horizontal
tension to the weight per unit length. -

119. Load distributed uniformly along the horizontal. This is
the case of the cables supporting a suspension bridge if the weight
of the cables is neglected in comparison with that of the bridge.
When a cord supports a load distributed uniformly along the
horizontal, the weight supported by any segment is proportional
to the length of the projection of the segment on a horizontal
line. If w' denotes the weight per horizontal unit, then

= w’x,
and the differential equation of the curve [(6), Art. 117] becomes
M d(tan ¢) _ d (dy\dz _w' dz
ds dz(dz) e H ds

Setting Q-HI= ¢’y equation (1) takes the form
@ | %’4= .

In order to determine the constants of integration, we choose
the origin at the lowest point of the curve. The initial condi-

tions are y=0, —3 =0, when z=0. Integrat-

ing (2) and i 1mposmg these condltlons, we find
for the equation of the curve

c’ .
(8) y=-:2'37zn 0 X

This equation represents a parabola with its axis vertical and
latus rectum = }¢’. Hence the
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THEOREM. The curve assumed by a cord carrying a weight dis-
tributed uniformly among the horizontal i8 a parabola with its axis
vertical and latus rectum equal to }¢', where ¢’ is the ratio of the weight
per unit horizontal distance to the horizontal tension.

PROBLEMS

1. If s denotes the arc of the catenary measured from the lowest point, and ¢
is the inclination of the tangent to the horizon, prove the following relations:

(a) s=c tan ¢,
(b) y=cseco,
(c) p—s2=c%

2. A cord hanging in the form of a catenary [(4), Art. 118] sustains a load of
60 1b. per foot, and the tension at the lowest point is8 1000 1b. The points of sus-
pension are in the same horizontal line 100 ft. apart. Find (a) the cotrdinates of
the points of suspension, (b) the length of the cord, (c) the direction of the cord
at the points of suspension. Ans. (a) (+ 60, 122.6), (b) 241.8, ¢ =80° 37',
3. A uniform measuring chain of length [ is tightly stretched over a river, the

middle point just touching the surface of the water, while each of the extremities
has an elevation k above the surface. Show that the difference between the length

of the measuring chain and the breadth of the river is nearly %i

4. A chain 110 ft. long is suspended from two points in the same horizontal
plane, 108 ft. apart. Show that the tension at the lowest point is nearly 1.477
times the weight of the chain.

5. A heavy chain hangs over two smooth fixed pegs. The two ends of the
chain are free and the central portion hangs in a catenary [(4), Art. 118] Show
that the free ends are on the X-axis,

6. A heavy uniform chain is suspended from two fixed points A and B in the
same horizontal line, and the tangent at 4 makes an angle of 456° with the horizon.
Prove that the depth of the lowest point of the chain below AB is to the length of

7. If a and B are the angles which a uniform heavy string of length I makes
with the vertical at the points of support show that the height of one point above

the other is lcos}(a+p).
cos § (&— F)

120. Stability. Suppose a heavy bead is constrained to slide
on a wire in the form of a vertical circle. If the bead is at rest
at the highest point A or at the lowest point B of the circle, the
forces acting upon it are in equilibrium. If the bead is given a
small displacement from the highest point A4, the forces .are no
longer jn equilibrium and the bead will move away from 4. The
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position A is said to be a position of unstable equilibrium. If the
bead is given a small displacement from the lowest point B, the
. forces are no longer in equilibrium, but the bead will return to its
original position, and, if the wire is smooth, will perform small
oscillations about B. The position B is said to be a position of
stable equilibrium. :

Suppose the bead is constrained to slide on a horizontal wire.
At any point on the wire the forces acting on the bead are in
equilibrium. If the bead is given a small displacement from a
position P, it will remain in the new position. The position P is
said to be a position of neutral equilibrium.

To derive the analytic conditions for stability we make use
of the potential function (Chapter X). Suppose a particle is con-
strained to move without friction along a given path of any shape
in a plane conservative field of force. Assume that the poten-
tial U is a known function of the cotrdinates z and y. In addi-
tion to the force of the field the particle is acted upon by a force
of constraint (the pressure of the path) which, at any point of
the path, is equal in magnitude but opposite in direction to the
normal component of the force of the field. The resultant force
acting on the particle is therefore the tangential component of the
force of the field, and this is (Art. 94)

aUu d,
E= == (g Bg)
The necessary and sufficient condition that any position 4 (zy, ¥;)
on the path shall be a position of equilibrium, is that

U
Fi(zp y) =—5,=0.

But this is the condition (Calculus, p. 118) that the functnon 74
shall be & maximum or minimum.* Hence the

THEOREM. For a position of equilibrium of a particle in a con-
servative field of force, the potential energy is either a mazimum or a
minimum.

* It may happen that the graph of the function U(s) has a point of inflection for the
value s = 8;, corresponding to the point A (z;, y;) of the path of the particle. For ex-
ample, suppose a heavy bead slides on a smooth wire in a vertical plane, and that the
point A4 is a point of inflection where the tangent is horizontal. The point A is then a
position of equilibrium for the bead, but the potential function U is neither a maximum
nor a minimum. This special case is excluded in the statement of the theorems which
follow.
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The point A is a position of stable equilibrium if, when given
a small displacement from A in either direction, the particle tends
to return to A. From Art. 94 the force at any point in a con-
servative field is directed towards the region of lower potential.
Hence, if the particle returns to A, we may conclude that the
value of the potential at 4 is smaller than at neighboring points
of the path. In other words, at a position of stable equilibrium
the potential function is a minimum. Similarly, at a position of
unstable equilibrium the potential function is a maximum.

THEOREM. For a position of stable (unstable) equilibrium of a
particle in a conservative field of force, the potential energy is a
minimum (mazimum).

Since maximum and minimum values of a continuous function
of one variable occur alternately, we have the

THEOREM. Along any given path in a conservative field of
Jorce, positions of stable and unstable equilibrium occur alternately.

In solving problems to find the positions of equilibrium we
may either (1) express the potential in terms of s, the length of

arc along the curve, and use the condition %%I = 0; or (2) we

may find the components of force and use the condition
F,g—: + F,gg = 0 where y is expressed in terms of z by the equa-
tion of the given curve; or (3) we may choose the direction along
the curve so that s is an increasing function of z (or ), and
examine the conditions under which U, as a function of z (or y),
is a maximum or minimum.

ILLUSTRATIVE EXAMPLES

1. A bead of mass m is constrained to move on a smooth curve y = f(z) in a
field of force of which the potential function is U=— } mw%2? 4+ mgy. Find the
positions of equilibrium.*

* This problem in the plane is equivalent to the following:

A heavy bead slides on a wire in the form of the curve y = f (), the Y-axis being
directed vertically upwards. The plane of the wire rotates about the Y-axis with con-
stant angular velocity w. Determine the position of equilibrium of the bead.

Suppose the bead is in a position of equilibrium 4(z, y). It then revolves around
the Y-axis in a circle of radius z with angular velocity w. The bead exerts a horizontal

pressure on the wire equal to '—';—vg =muw¥% (Art. 54). For motion of the bead along the
wire the resultant of the forces acting is equivalent to that of the field specified above.
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Solution. The components of the force acting at any point of the fleld are

iven by (Art. 81 .
gl ¥ ( ) F,=——U=mu’x,

0z

® U
F' =—E——mg.

For a position of equilibrium we have
dz
nz+n%=m
or,
n+n%;m
where :—ﬁ is found from the equation of the curve.

Substituting the values from (1), the positions of equilibrium are found by
solving the equations

]
wiz=g--,
dx
(©))
y=s(.

2. Suppose the curve of example 1 is the straight line y =z tan «. Find the
position of equilibrium and determine whether it is stable or unstable.
Solution. Substituting in equations (2) we have
w?x = g tan a,
y =z tan .
This set of equations has one solution, namely,
= fﬁt&n @ y= -(.%ta.u2 o

To determine whether the equilibrium is stable or unstable, we express the
potential in terms of the length of arc measured from the origin. Since the curve

is a straight line, we have
x=3scosa, y=ssina.

Hence
= — § mw?s? cos? & + mgs sin .
Differentiating,
% = — muw?s cos’x + mg sin e,
au
—- = — muwicos?a.
5 08’
Since the second derivative of U is negative, the function U is (Calculus, p. 124)
a maximum, and the position is one of unstable equilibrium. M

PROBLEMS

1. Suppose the curve of illustrative example 1 is the parabola 2 = 2py. Show
that there is no position of neutral equilibrium unless g = pw3. If this condition is
satisfled, then every point on the curve is a position of equilibrium.

2. If the curve is the circle 28 + y3 = a2, find the position of equilibrium.
Ans. Yy=-— ﬂ_.
w*
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3. Suppose the curve is the cubical parabola 3y =2%. Find the position of

equilibrium and prove that it is stable. ¢ . Ans. z= %, y= 32;-;

4. Suppose the curve is the semicubical parabola 9% = 42%. Find the position

of equilibrium and prove that it is unstable. ' Ans. z= g_: y =§ g
w

6. A heavy bead slides on a smooth wire of any shape in a vertical plane.
Discuss the positions of equilibrium.

6. A unit particle is constrained to move along the curve ny = z*, in the fleld
of force of which the potential function is U = — w%2? 4+ 2gy. Show that the position
of equilibrium is unstable, neutral, or stable according as n is less than, equal to, or
greater than 2.

7. A unit particle is constrained to move along the circle x? 4 y? = a2, in the
field of force of which the potential function is U = 423 4+ By?. Discuss the posi-
tions of equilibrium.

8. A unit particle is constrained to move along the ellipse a£:+ g =1, in the
fleld of force of which the potential function is U = 22 + y?. Discuss the positions
of equilibrium. ’

1

9. In the preceding problem suppose the potential of the fleld is ' = ———.
VAT




CHAPTER XIV
COLLECTION OF FORMULAS

For the convenience of the student we give the following list
of elementary formulas from Algebra, Geometry, Trigonometry,
Analytic Geometry, and Calculus.

FORMULAS FROM ALGEBRA
1. Binomial Theorem (» being a positive integer):
(a+b)u =a"+na*1b + n(nLé_- llan—zbﬂ + n(n— IL)?,( n— 2) ar8h8 4 ...
+ n("—l)(n_2) (n_r+2) ar—rHipr-14 ...,

[r—1
Also written:
(a+b)"=a"+ (’1‘) a* 1 + (’;) a3 4 (g)w'"’b’ + -

+(, 2 pariige.

r—

2 nl=n=1.2.8-4..-(n—Dn.

3. In the quadratic equation az?+ bz+ ¢ =0,
when 5 — 4 ac > 0, the roots are real and unequal ;
when 52 — 4 ac = 0, the roots are real and equal;
when 8 — 4 ac < 0, the roots are imaginary.

4. When a quadratic equation is reduced to the form
ot +pr=g, p =sum of roots with sign changed,
and g = product of roots with sign changed.
5. In an arithmetic series,
=a+ (n—-1)d; s=g(a+l)=’§'[2a+ (n—1)d].
6. In a geometric series,
_rl—a_a(r-1)

r—1 r—1
267

l=arm1; s
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7. log ab =log a + log b. 9. loga"=mnloga.
-1
8. log=1loga—1logb. 10. log ¥a=>loga.
11. logl=0. 12. log,a=1. 13. log% = —loga.

FORMULAS FROM GEOMETRY

14. Circumference of circle=2r.*

15. Area of circle = 73, 16. Volume of prism = Ba.
17. Volume of pyramid = } Ba.

18. Volume of right circular cylinder = mr%a.

19. Lateral surface of right circular cylinder = 2 7rra.

20. Total surface of right circular cylinder = 2 7r(r + a).

21. Volume of right circular cone = } m2a.

22. Lateral surface of right circular cone = 7rs.

23. Total surface of right circular cone = 7r(r + 8).

24. Volume of sphere = § wr%. 25. Surface of sphere=4mr2

FORMULAS FROM TRIGONOMETRY
26. sinz= 1 3 COBZ == —1—'; tanz = 1
S| sec cotz

sinz cos z
27. tanz=—=; cotz=-"—=-
cos sinz

" 28, sinz+cosdz=1; 1+ tan?z=sectz; 1+ cotdz = csciz.

29. sina:=cos(g—z); 30. sin (7 — z) =sinz;

cosz=sin<;—r—z); cos(mr—x)=—co8z;
tan z = cot ("2—" - :v). tan (w — z) = —tanz.

3l. sin(z+ y) =sinzcosy + coszsiny.
32. sin (z —y) =sinzcosy — cos zsin y.

33. cos(z+y) =coszcosy—sinzsiny.

* In formulas 14-25 » denotes radius, a altitude, B area of base, and & slant height.




COLLECTION OF FORMULAS 269

34. cos(z—y)=coszcosy+sinzsiny.

35. tan(x+y)= tanx+tan2.

1—-tanztany
tan z — tan
36. tan — =_——L.
=9 1+ tanztany
37. sm2z=2sm:u:,osz; tan 2z = 2tanz .
co8 2z = cosdz — sin?z; 1—tan3z
38. sinz=2sinZcos%; 2tanZ
2 2 tan z = 2
Y z
08 z= cos?= — 8in3 =; 1 — tan?Z
cos z= cos’z — 8 3 n2

39. cos?z=}+}cos2z; sinz=}—}cos2z.

40. 14 cosz= 2cos"£; 1—cosz= 2sin.’g-

1—cosz
tanZ = :t\/—-
an2 14 cosz

42. sinz +siny=2sin} (z + y) cos } (z — ).
43. sinz—siny=2cos} (z+y)sin}(z—~y).
44. cosz+cosy=2cqs }(z+y) cos § (z—y).
45. cosz—cosy=—2s8in}(z+ y)sin}(z—y).

a _ b _ ¢ . .
46. mA-snB -0’ Law of Sines.

47. =04 32— 2bccos A; Law of Cosines.

FORMULAS FROM ANALYTIC GEOMETRY

48. d=V(z;— 2,)®+ (¥, — ¥y;)?; distance between points
(@p ¥ and (23 ¥,)-

49, d=—"1__"Y1_ ~. distance from line
tVA + B Az + By+ C=0 to (2, 9y)-
_T A, Y+ Ay,
8. 2= V=T
line PP, in the ratio A.

(z, y) is the point dividing the

LY
¢
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51. z=x,+2',y=y,+y'; transforming to new origin (zy ¥,)-
52. z=4' cos@— y sin 6, y =2’ sin 0 + y' cos §; transforming
to new axesiakifgithd angle 6 with old.

53. z=pecos @, y=psin @; transforming from rectangular to
polar codrdinates.

54. p=Vad+ 3 6 =arc tan%; transforming from polar to
rectangular coordinates. :

55. Different forms of equation of a straight line:

Y=4%_Y—% i m
(a)' P ok two-point form ;

(V) §+% =1, intercept form ;

(¢) y—y,=m(z— =z,), slope-point form ;
(d) y=mz + b, slope-intercept form ;

(¢) zcosa+ ysin e = p, normal form;
(f) Az + By + (=0, general form.

56. Distance from the line zcos e+ ysin e —p =0 to the
point (z, ¥,) =z, cos @ + ¥, sin a — p.

57. tanf=-1_"3, angle between two lines whose slopes are

1+m
m, and m,. + gy
m, = my when lines are parallel,
1 . ' .
and m; = — — when lines are perpendicular.
m
2

58. (z—a)?+(y — B)?=13; equation of circle with center
(e, B) and radius r.

59. d=V(z,—2,)%+(y, — ¥3)* + (2, — 23)?; distance between

points (z;, ¥y, 2;) and (z,, ¥, 2,)-

60. d=AutBy+C+ D
tVA+ B4 (2

Az + By+ Cz + D = 0 to point (2, ¥;. 2,)-

; distance from plane

6l. cos?a+cos?B+cosfy=1; a, B, v being the direction
angles of a line in space.
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62.. zcos @+ ycos B+ zcosy; projection of the line joining
(0, 0, 0) and (2, ¥, 2) upon a line whose direction angles are a, 3, v.

.83 (z—a)®+(y—PB)?+ (z—1v)?=13; equation of sphere
with center («, 8, ¥) and radius .

FORMULAS FROM CALCULUS

64. Radius of curvature.
(a) Rectangular codrdinates.

(@7

T
dz*

[+

=)

(%) Polar coordinates.

R
0

g
d dh d B

(¢) Parametric form.

65. Plane area.
(a) Rectangular coordinates.

A= f ydz = f dyde.

(%) Polar cobrdinates.

A=%fp’d0=ffpdpd0.

66. Length of arc.
(a) Rectangular codrdinates.

'= f [da?+ dy)' = f [1+(g€)z]bdz= f [(g—‘;>2+ IJ‘dy.

(%) Polar coérdinates.

o= f[p* + (gg)’]‘ d6 = f [pﬂ((‘j—,)”)’ + 1] Y.



272 THEORETICAL MECHANICS
67. Volume of solid of revolution about the X-axis.

V=mw f yidz.

68. Area of surface of revolution about the X-axis.

A= 21rfyds = 'Z‘rrfy[l + (%)’]}dx=2 rfy[(g—;)2+l]‘dy.

69. Area of any surface, z =f(z, ¥).

t
4= [ [1 +(Z)+ 3—;)’] dyda.
70. Volume of any solid.

V=fffdzdydz. ;

DIFFERENTIAL EQUATIONS
71. The differential equation of HARMONIC MoOTION.
d%

T + k= 0.
The general solution may be written in the following forms:
(a) z = "1 4 gpe~V-1,
©) z = A cos kt 4 Bsin kt.

We give to (4) another form, thus :
Draw a right triangle with sides 4 and B. Since 4 and B are

arbitrary constants, this right triangle is ar-
a 4 Ditrary, and hence also the hypotenuse C' and
the angle 8. Now,
)

A= CsinB, B= Ccosp,
and substitution in (b) gives
z = ((sin B cos kt + cos Bsin kt), or,
(©) z = Csin (kt + B).

If il} (¢) we write for 8, 8/ + g, we obtain

= (Csi 4 T
z Csm(lct +8 + 2), or
(@) z = Ccos (kt + B').
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In these formulas ¢, ¢y, 4, B, C, B, B' denote arbitrary
constants.

72. Pz _ 13, 0,

das
The general solution is

z = c;e + cpe™ M.

78. The differential equation of DAMPED VIBRATION.

diz dz
B dt

The general solution is
z=e¢"(A cos VEE— pdt+ B sin Vi — 3 t), or
z= Ce™ cos (VIB— p?t + B).

—+2u—+kz=0, u<k.

74. The differential equation of harmonic motion with a con-
stant disturbing force.

&z _
dt’ + k= c.

The general solution is

z=A cos kt 4+ B sin kt+k” or

z= Csin (lct+,8)+k%-

75. The differential equation of FORCED VIBRATION.

(a) ﬁ+k~"x—1}cosnt+2l[sm'nt where n+ k.

de
The general solution is

z= A cos kt+ B sin kt + cos nt + sin nt,

L M
P P

where A and B are arbitrary constants. -

) g+w L cos kt + Msin kt.

The general solution is

_ . L, . M
z= A cos kt 4+ B sin kt+2—kt sin kt 2kt cos kt.
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FORMULAS FOR DIFFERENTIATION

In these formulas, %, v, and w denote variadle quantities which
are functions of 2.

de
I = =0
o 0.
dx
=Z=1
I dx
dv _dw
III 4 - av
(u+v w) = dz+dz oy
Iv —(cv)_c—-
4 v du
v dx(w) ud:c+vda:
Vi d;dz (0103 -++ On) = (Vgvg +-- On) % + (0193 -+« va) %_:’ 4 oo
+(vm-~-v.-n)%
viI (%(m) = non-l:_:.
d
VII — (™) = 1,
a dz( ) = nx—
p QU _ 40
dfu dx dx
v : —( - ) = —————
m dx(o) vd
du
d fu\_dr
Viia E(Z)"T
dv
dfc CE‘E
VI b §<E)=‘_v*"
dv
d dx
4 (logav)=logae- &.
IX dx(log v)=1logse -
dv
d de
IXa dz(logv)-—
dv
= (a*) =a°l =
(a) a ogadx
Xa i(ev)=ev—-
dz dz

X1 —-(u')—w'-lg;‘+logu u'g:




X1

XIII

XI1v

XV

XVl

XvVIl

XVIII

XIX

XXI

XXII

XXIII

XXI1V

XXv

XXVl

XXVl

COLLECTION OF FORMULAS T 278

3
%(sinv):couv%-

%(cosv):—sinog%

d dv
—(tanv) = =,
( ﬁ) sec’v

-(%(cotv):—esc’v%-

(%(seco):secvtanvg-:.
d—i(csco):-cscocotv:—;’-
%(vemv):sino:—:-
dv
d dx
— (arc sin v) = .
az ¢ ) vi—o?
dv
d dx
—(arc Cos8 9) = = ——————*
i RV, e
dv

d dx
a(&l‘c tan 0)—-m'
, do
d dx
dx(m cot v)‘_l_ﬁ'
do

4 (arc Bec v) = dz
dx ?Voi—1

o
&
vVri—-1

dv

d =
E(arcescv)_

d dz
— (arc verg 9) = ———*
da:( ) ) vV2v—0?

dy _dy :—:,'y being a function of v. .

dx dv

dy_1 o vein a. function of z.

dy
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[

»

®

10.

11

12.

13.

14.

16.

16.

17.

18.

19.

THEORETICAL MECHANICS

INTEGRALS FOR REFERENCE

SOME ELEMENTARY FORMS

fado=afan.

far@) = fr@d=sm+ec.

§

. f(duidv;tdwi ---)=fdu:tfdv:tfdw;{;

N aaid
4. _fzv-dz_"+1+c,n¢1,

5. f%:log:c+0.

ForM8 CONTAINING INTEGRAL POwWERSs oF a + bz

_dx
a+ bx

=%log(a+bz)+ C.

(6 +bryrde = GEOD™M L oy 1,

b(n+1)

fF(z, a + bx)dx. Try one of the substitutions, &£ = a 4 bx, 2e =a + b=

§

f(a+bz)° bs[ a+bz+2(a+b:r.)*

§
f
S

z2dx

(a+b2)? bs[“ +bx -

dz

1

_xdr_ _ 1 —al ,
_f“bx b’[a+b:r. alog (a + bx)] + C.
f”’d” =L [4(a +bz)1— 2 a(a + bz) +a?log (a + bz)] + C.
a+bx b
dx 1, a+4hr
(2 _Ljgathr o
.fx(a+bz) aog x +C
e __1.b a+b:c
.fx‘l(a+bz)_ + alog +C.
f(a+bz)ﬁ »

a+bz+0.

z(a + bx)? = a(a + bx)

1
- ;ilog

]+0

FORMS CONTAINING @ + 23, a2 — 23, a + bx", a 4 baB

dz =1tan-l’—’+0; f dz

a2+zﬁ

dx 1 a+z
=—1o

at—z2 2a g z+

ar_ _ 1 tap-10. [

a+bx2  /ap

=tan-lz 4 C.

1422
dr 1 logZ =%+ C

P )A—ai 24 ®zxa

+ C, when ¢ >0 and b>0.




21.

22.

23.'.f

= 1 z
2. f(a2 + 22" 2(n —1)a? [(aa 28yl +(

= z
%- f(a +br2)n " 2(n—1)a [(a + bad)yn-1 +

2 &8 & ¥ 8

COLLECTION OF FORMULAS 277
dx 1, a + bx
Ao T g e+ O
f 2m(a + b dz
T l(a + be)PHl  a(m—n+1) m—n
b(np+m+1) b(np+m+1) Zn=Na + bx)r dz.
_x™tl(qg 4 bzr)r anp - _
j'zﬂ(a+bz')'dx P e z™(a + bam)r-1dz.
dx
z™(a + bam)r ..
— 1 _(m=—n+np-—-1 dz
(m s az™-1(a + bar)r-1 (m - 1)a zn-n(a + bxr)r’
j‘ dz '
x™(a + bx~)?
= 1 m—n+np—1 dx .
an(p — 1)a=-1(a + bx")r-1 an(p—1) z=(a + ba)r-1
j‘(a +boaM)rde (a4 bxm)rtl  b(m—n—np—1) ((a+ bem)rdz,
a(m — 1)zm-1 a(m -1) Zm—n
j‘(a + bam)rdx _ (a + bzn)r (a+bz™)r-ldr
T (np —m + 1)am1 np m + 1 xm
mdr gm—n+l _am—n+1) xm-ndx
(a+dzr)» b(m—np +1)(a+ bx)»-1 b(m—np+1)J (a+ bz")'
mdr 1 _m+n—np+lj' .
(a+bz*)?  an(p — 1)(a + bzr)r-! an(p —1) (a + bar)r-1

s ot

=Tl

xdz dz
== h =z2
(@ + by 2f(a+bz)-'we“' T
2de -z + 5 dx .
(a+bx2)s ~ 2b(n—1)(a + ba2)*1 " 2b(n—1)J (a+ bx?)»-1
dx 1
A _ 1,
fx(a+bx") an ga+bz"+0
[P -2 :
z3(a + bx?)* @ a:’(a+ bx2)»-1  aJ (a4 bx3)»
\)
xdx 1 dx 1 z2
=1 2 c f—————==log—— +C.
5a+bz’ 25 °g(”+ )"'C 5:(a+bz’) 2a Favom T
j‘x’dx _z_a(_dz | 5 dx __l-!!j'____d” .
a+bx2 b bJa+ bat © Jz3(a 4 bx?) ax a + bx?
x 1 dx
(a +bz’)’ 2a(a + bad) a+ bt
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40.

41.

47.

49.

50.

51.

62.

63.

b4.

66.
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FORMS CONTAINING V4 + bz

fevattmaz =~ 2G-StV @ b2}, o

jﬂm 2(803—12abz+16b3x')\/(¢+u)3+0

§

-

106 b*

_—2(2a—blea+bx+ C.

Va + bz 3v
j‘ 23dr ___2(86’ 4abx+8b’z')\/F+c
va + bz 1508
f.__d”__=l_.lo M-p C, for a >0.
zvVa+be Ve Va+bz+Va

daz = 2 tan- “+ + C, for a < 0.
zvVa+bx V-—a
_f dz =—\/a+bx_i i
#Vva + bz ax 2¢/) zva+ bz

j'____"‘?;d":z\/m'i+af dx

z\/a+bz'

FORMS CONTAINING VZ? + a?

X f(z’+a’)’dx=§\/z’+a‘3 +1‘log(z +Vzi4ad)+ C.
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fzﬂ(xﬂ—a’)}dz=§(2z’—a’) z“—a’—%log(z+\/x'3— a®)+ C.
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